CR geometry in 3-D

Paul C. Yang

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (2) : 695 -710.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (2) : 695 -710. DOI: 10.1007/s11401-017-1091-8
Article

CR geometry in 3-D

Author information +
History +
PDF

Abstract

CR geometry studies the boundary of pseudo-convex manifolds. By concentrating on a choice of a contact form, the local geometry bears strong resemblence to conformal geometry. This paper deals with the role conformally invariant operators such as the Paneitz operator plays in the CR geometry in dimension three. While the sign of this operator is important in the embedding problem, the kernel of this operator is also closely connected with the stability of CR structures. The positivity of the CR-mass under the natural sign conditions of the Paneitz operator and the CR Yamabe operator is discussed. The CR positive mass theorem has a consequence for the existence of minimizer of the CR Yamabe problem. The pseudo-Einstein condition studied by Lee has a natural analogue in this dimension, and it is closely connected with the pluriharmonic functions. The author discusses the introduction of new conformally covariant operator P-prime and its associated Q-prime curvature and gives another natural way to find a canonical contact form among the class of pseudo-Einstein contact forms. Finally, an isoperimetric constant determined by the Q-prime curvature integral is discussed.

Keywords

Paneitz operator / Embedding problem / Yamabe equation / Mass / P-prime / Q-prime curvature

Cite this article

Download citation ▾
Paul C. Yang. CR geometry in 3-D. Chinese Annals of Mathematics, Series B, 2017, 38(2): 695-710 DOI:10.1007/s11401-017-1091-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boutet de Monvel L.. Integration des Equations de Cauchy-Riemann Induites Formelles, 1974

[2]

Branson T. P., Fontana L., Morpurgo C.. Moser-Trudinger and Beckner-Onofri’s inequalities on the CR sphere. Ann. of Math. (2), 2013, 177(1): 1-52

[3]

Branson T. P., Gover R.. Conformally invariant operators. differential forms, cohomology and a generalisation of Q-curvature, Comm. Partial Differential Equations, 2005, 30: 1611-1669

[4]

Burns D.. Global behavior of sometangential Cauchy-Riemann equations. Proceedings Conf. Park City, Utah, 1979, New York: Dekker 51-56

[5]

Burns D., Epstein C.. A global invariant for three dimensional CR-manifolds. Invent. Math., 1988, 92: 333-348

[6]

Case J., Hsiao C. Y., Yang P. C.. Extremal metrics for the Q-curvature in three dimensions, 2015

[7]

Case J., Yang P. C.. A Paneitz-type operator for CR pluriharmonic functions. Bull. Inst. Math. Acad. Sinica, 2013, 8: 285-322

[8]

Case, J., Chanillo, S. and Yang, P. C., The CR Paneitz operator and the stability of CRpluriharmonic functions, Advances in Math., to appear.

[9]

Case, J., Chanillo, S. and Yang, P. C., A remark on the kernel of the Paneitz operator. http://dx.doi.org/11.1016/j.na.2015.04.001

[10]

Chang S. Y. A., Yang P. C.. Extremal metrics of zeta function determinants on 4-manifolds. Annals Math., 1995, 142: 171-212

[11]

Chang S. Y. A., Gursky M., Yang P. C.. A conformally invariant sphere theorem in four dimensions. Pub. IHES, 2003, 98: 105-143

[12]

Chanillo S., Chiu H.-L., Yang P. C.. Embeddability for 3-dimensional Cauchy-Riemann manifolds and CR Yamabe invariants. Duke Math. J., 2012, 161: 2909-2921

[13]

Chanillo S., Chiu H.-L., Yang P. C.. Embedded three-dimensional CR manifolds and the nonnegativity of Paneitz operators, Geometric Analysis, Mathematical Relativity, and Nonlinear Partial Differential Equations, 2013, Providence, RI: Amer. Math. Soc.

[14]

Cheng J.-H., Malchiodi A., Yang P. C.. A positive mass theorem in three dimensional Cauchy-Riemann geometry, 2013

[15]

Cheng J.-H., Hwang J.-F., Malchiodi A., Yang P. C.. Minimal surfaces in pseudohermitian geometry. Annali Scuola Norm. Sup. Pisa, 2005 129-177

[16]

Fefferman C.. Monge-Ampere equations, the Bergman kernel, and geometry of pseudoconvex domains. Ann. of Math., 1976, 103: 395-416

[17]

Fefferman C., Hirachi K.. Ambient metric construction of Q-curvatures in conformal and CR geometry. Math. Res. Lett., 2003, 10: 819-831

[18]

Fontana, L. and Morpurgo, C. Adams inequality on measure spaces, Adv. Math., 226, 2011, 5066–5119.

[19]

Gover A. R., Graham C. R.. CR invariant powers of the sub-Laplacian. J. Reine Angew. Math., 2005, 583: 1-27

[20]

Gover A. R., Peterson L. J.. The ambient obstruction tensor and the conformal deformation complex. Pacific J. Math., 2006, 226(2): 309-351

[21]

Graham C. R.. Compatibility operators for degenerate elliptic equations on the ball and Heisenberg group. Math. Z., 1984, 187(3): 289-304

[22]

Graham C. R., Lee J. M.. Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains. Duke Math. J., 1988, 57(3): 697-720

[23]

Gursky M.. The principal eigenvalue of a conformally invariant differential operator. with an application to semilinear elliptic PDE, Comm. Math. Phys., 1999, 207: 131-143

[24]

Hirachi K.. Scalar pseudo-Hermitian invariants and the Szegö kernel on three-dimensional CR manifolds, 1990

[25]

Hirachi, K., Q-prime curvature on CRmanifolds, preprint. arXiv: 1302.0489

[26]

Hsiao, C.-Y., On CR Paneitz operators and CR pluriharmonic functions, preprint. arXiv: 1405.0158

[27]

Hsiao C.-Y., Yung P.. Solving Kohn Laplacian on asymptotically flat pseudohermitian 3-manifolds, 2013

[28]

Kerzman N., Stein E. M.. The Szego kernel in terms of Cauchy-Fantappie kernels. Duke Math. J., 1978, 45: 197-224

[29]

Kohn J. J.. The range of the tangential Cauchy Riemann operator. Duke Math. J., 1986, 53: 525-545

[30]

Lee J. M.. The Fefferman metric and pseudo-hermitian invariants. Trans. Amer. Math. Soc., 1986, 296: 411-429

[31]

Lee J. M.. Pseudo-Einstein structures on CR manifolds. Amer. J. Math., 1988, 110: 157-178

[32]

Lempert L.. On three-dimensional Cauchy-Riemann manifolds. J. Amer. Math. Soc., 1992, 5: 923-969

[33]

Lempert L.. Embeddings of three dimensional Cauchy Riemann manifolds. Math. Ann., 1994, 300(1): 1-15

[34]

Rossi H.. Attaching analytic spaces to an analytic space along a pseudoconvex boundary. Proceedings of the Conference on Complex Analysis, 1965 242-256

[35]

Tanaka N.. A differential geometric study on strongly pseudo-convex manifolds, Lectures in Mathematics, 1975, Tokyo: Kinokuniya Book-Store Co., Ltd.

[36]

Wang Y.. Isoperimetric inequality, Q-curvature and Ap weights, 2013

[37]

Wang Y., Yang P. C.. Isoperimetric inequality on CR manifolds, 2015

[38]

Webster S. M.. Pseudo-Hermitian structures on a real hypersurface. J. Differential Geom., 1978, 13(1): 25-41

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/