Symmetrization for fractional elliptic and parabolic equations and an isoperimetric application

Yannick Sire , Juan Luis Vázquez , Bruno Volzone

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (2) : 661 -686.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (2) : 661 -686. DOI: 10.1007/s11401-017-1089-2
Article

Symmetrization for fractional elliptic and parabolic equations and an isoperimetric application

Author information +
History +
PDF

Abstract

This paper develops further the theory of symmetrization of fractional Laplacian operators contained in recent works of two of the authors. This theory leads to optimal estimates in the form of concentration comparison inequalities for both elliptic and parabolic equations. The authors extend the theory for the so-called restricted fractional Laplacian defined on a bounded domain Ω of ℝ N with zero Dirichlet conditions outside of Ω. As an application, an original proof of the corresponding fractional Faber-Krahn inequality is derived. A more classical variational proof of the inequality is also provided.

Keywords

Symmetrization / Fractional Laplacian / Nonlocal elliptic and parabolic equations / Faber-Krahn inequality

Cite this article

Download citation ▾
Yannick Sire, Juan Luis Vázquez, Bruno Volzone. Symmetrization for fractional elliptic and parabolic equations and an isoperimetric application. Chinese Annals of Mathematics, Series B, 2017, 38(2): 661-686 DOI:10.1007/s11401-017-1089-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Applebaum D.. Lévy processes and stochastic calculus, Cambridge Studies in Advanced Mathematics, 2009, Cambridge: Cambridge University Press 116

[2]

Bandle C.. Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, 1980 7

[3]

Bandle C.. On symmetrizations in parabolic equations. J. Analyse Math., 1976, 30: 98-112

[4]

Banuelos R., Latala R., Méndez-Hernández P. J.. A Brascamp-Lieb-Luttinger-type inequality and applications to symmetric stable processes. Proc. Amer. Math. Society, 2001, 129(10): 2997-3008

[5]

Barbu V.. Nonlinear Semigroups and Differential Equations in Banach Spaces, 1975

[6]

Bénilan Ph.. Equations d’évolution dans un espace de Banach quelconque et applications (in French), 1972

[7]

Bertoin J.. Lévy processes, Cambridge Tracts in Mathematics, 1996, Cambridge: Cambridge University Press 121

[8]

Bénilan P., Brezis H., Crandall M. G.. A semilinear equation in L1(RN). Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1975, 2(4): 523-555

[9]

Betsakos D.. Symmetrization. symmetric stable processes, and Riesz capacities (electronic), Trans. Amer. Math. Soc., 2004, 356: 735-755

[10]

Bonforte M., Sire Y., Vázquez J. L.. Existence. uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst. A, 2015, 35(12): 5725-5767

[11]

Bonforte M., Vázquez J. L.. Quantitative local and global a priori estimates for fractional nonlinear diffusion equations. Advances in Math., 2014, 250: 242-284

[12]

Bonforte M., Vázquez J. L.. A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Arch. Ration. Mech. Anal., 2015, 218(1): 317-362

[13]

Brasco, L., Lindgren, E. and Parini, E., The fractional Cheeger problem, Interfaces Free Bound., 16(3), 419–458.

[14]

Brothers J., Ziemer W.. Minimal rearrangements of Sobolev functions. J. Reine Angew. Math., 1988, 384: 153-179

[15]

Bucur D., Freitas P.. A new proof of the Faber-Krahn inequality and the symmetry of optimal domains for higher eigenvalues, 2012

[16]

Cabré X., Sire Y.. Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2014, 31(1): 23-53

[17]

Cabré X., Tan J. G.. Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math., 2010, 224(5): 2052-2093

[18]

Caffarelli L., Silvestre L.. An extension problem related to the fractional Laplacian. Comm. Part. Diff. Eq., 2007, 32(7–9): 1245-1260

[19]

Caffarelli L., Stinga P.. Fractional elliptic equations. Caccioppoli estimates and regularity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2016, 33(3): 767-807

[20]

Chavel I.. Eigenvalues in Riemannian Geometry, Series in Pure and Applied Mathematics, 1984, Orlando: Academic Press 115

[21]

Chong K. M.. Some extensions of a theorem of Hardy. Littlewood and Pólya and their applications, Canad. J. Math., 1974, 26: 1321-1340

[22]

Brändle C., Colorado E., de Pablo A.. A concave-convex elliptic problem involving the fractional laplacian. Proceedings of the Royal Society of Edinburgh, 2013, 143A: 39-71

[23]

Crandall M. G.. Browder F.. Nonlinear semigroups and evolution governed by accretive operators. Proceedings of Symposium in Pure Math., Part I, 1986, Providence, RI: A. M. S. 305-338

[24]

Crandall M. G., Liggett T. M.. Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math., 1971, 93: 265-298

[25]

Di Blasio G., Volzone B.. Comparison and regularity results for the fractional Laplacian via symmetrization methods. J. Differential Equations, 2012, 253(9): 2593-2615

[26]

De Pablo A., Quirós F., Rodríguez A., Vázquez J. L.. A fractional porous medium equation. Adv. Math., 2011, 226(2): 1378-1409

[27]

De Pablo A., Quirós F., Rodríguez A., Vázquez J. L.. A general fractional porous medium equation. Comm. Pure Appl. Math., 2012, 65(9): 1242-1284

[28]

De Pablo, A., Quirós, F., Rodríguez, A. and Vázquez, J. L., Classical solutions for a logarithmic fractional diffusion equation, preprint.

[29]

De Pablo, A., Quirós, F., Rodriguez, A. and Vázquez, J. L., Classical solutions and higher regularity for nonlinear fractional diffusion equations, JEMS, to appear.

[30]

Ferone A., Volpicelli R.. Minimal rearrangements of Sobolev functions: A new proof. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2003, 20(2): 333-339

[31]

Faber C.. Beweiss, dass unter allen homogenen Membrane von gleicher Fläche und gleicher Spannung die kreisförmige die tiefsten Grundton gibt. Sitzungsber. Bayer. Akad. Wiss., Math. Phys. Munich., 1923 169-172

[32]

Frank R. L., Seiringer R.. Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal., 2008, 255: 3407-3430

[33]

Friedman A.. On the regularity of the solutions of nonlinear elliptic and parabolic systems of partial differential equations. J. Math. Mech., 1958, 7: 43-59

[34]

Hardy G. H., Littlewood J. E., Pólya G.. Some simple inequalities satisfied by convex functions, Messenger Math., 1952, Cambridge: Cambridge University Press 145-152

[35]

Hashimoto Y.. A remark on the analyticity of the solutions for non-linear elliptic partial differential equations. Tokyo J. Math., 2006, 29(2): 271-281

[36]

Kawohl B.. Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics, 1985, Berlin: Springer-Verlag

[37]

Kesavan S.. Symmetrization and applications, Series in Analysis, 2006, Hackensack, NJ: World Scientific Publishing

[38]

Krahn E.. Uber eine von Rayleigh formulierte Minmaleigenschaft des Kreises. Math. Ann., 1925, 94: 97-100

[39]

Landkof N. S.. Foundations of modern potential theory, Die Grundlehren der Mathematischen Wissenschaften, 1972, New York, Heidelberg: Springer-Verlag

[40]

Lions J.-L., Magenes E.. Non-homogeneous boundary value problems and applications, 1972, New York, Heidelberg: Springer-Verlag

[41]

Luttinger J. M.. Generalized isoperimetric inequalities. Proc. Nat. Acad. Sci. U.S.A., 1973, 70: 1005-1006

[42]

Maz’ja V. G.. Weak solutions of the Dirichlet and Neumann problems (in Russian). Trudy Moskov. Mat. Obsuc., 1969, 20: 137-172

[43]

Mossino J., Rakotoson J.-M.. Isoperimetric inequalities in parabolic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1986, 13(4): 51-73

[44]

Musina R., Nazarov A. I.. On fractional Laplacians. Comm. Part. Diff. Eqs., 2014, 39(9): 1780-1790

[45]

Park Y. J.. Fractional Pólya-Szegö inequality. J Chungcheong Math. Soc., 2011, 24(2): 267-271

[46]

Petrowskii I.. Sur l’analyticité des solutions des systèmes d’équations différentielles. Mat. Sbornik (N.S.), 1939, 5(47): 3-70

[47]

Polya G., Szegö C.. Isoperimetric inequalities in mathematical physics, Annals of Mathematics Studies, 1951, Princeton, N.J.: Princeton University Press

[48]

Servadei R., Valdinoci E.. Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst., 2013, 33(5): 2105-2137

[49]

Servadei R., Valdinoci E.. On the spectrum of two different fractional operators. Proc. Roy. Soc. Edinburgh Sect. A, 2014, 144(4): 831-855

[50]

Servadei R., Valdinoci E.. Weak and viscosity solutions of the fractional Laplace equation. Publ. Mat., 2014, 58(1): 133-154

[51]

Silvestre L. E.. Hölder estimates for solutions of integro differential equations like the fractional Laplace. Indiana Univ. Math. J., 2006, 55(3): 1155-1174

[52]

Silvestre L. E.. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math., 2007, 60(1): 67-112

[53]

Stein E. M.. Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 1970, Princeton, N.J.: Princeton University Press

[54]

Talenti G.. Elliptic equations and rearrangements. Ann. Scuola Norm. Sup., 1976, 3(4): 697-718

[55]

Talenti G.. Nonlinear elliptic equations. rearrangements of functions and Orlicz spaces, Annal. Mat. Pura Appl., 4, 1979, 120: 159-184

[56]

Talenti G.. Linear elliptic P.D.E.’s: Level sets. rearrangements and a priori estimates of solutions, Boll. Un. Mat. Ital. B, 1985, 4(6): 917-949

[57]

Valdinoci E.. From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl., 2009, 49: 33-44

[58]

Vázquez J. L.. Symétrisation pour ut = (u) et applications. C. R. Acad. Sc. Paris, 1982, 295: 71-74

[59]

Vázquez J. L.. Symmetrization and mass comparison for degenerate nonlinear parabolic and related elliptic equations. Advances in Nonlinear Studies, 2005, 5: 87-131

[60]

Vázquez J. L.. The porous medium equation. Mathematical Theory, Oxford Mathematical Monographs, 2007, Oxford: The Clarendon Press, Oxford University Press

[61]

Vázquez J. L.. Smoothing and decay estimates for nonlinear diffusion equations: Equations of porous medium type, Oxford Lecture Series in Mathematics and Its Applications, 2006, Oxford: Oxford University Press

[62]

Vázquez, J. L., Nonlinear diffusion with fractional Laplacian operators, Nonlinear Partial Differential Equations: The Abel Symposium 2010, Holden, H. and Karlsen, K. H. (eds.), Springer-Verlag, New York, 2012, 271–298.

[63]

Vázquez J. L.. Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. J. Eur. Math. Soc., 2014, 16: 769-803

[64]

Vázquez J. L., Volzone B.. Symmetrization for linear and nonlinear fractional parabolic equations of porous medium type. J. Math. Pures Appl., 2014, 101: 553-582

[65]

Vázquez J. L., Volzone B.. Optimal estimates for fractional fast diffusion equations. J. Math. Pures Appl. (9), 2015, 103(2): 535-556

[66]

Weinberger H.. Symmetrization in uniformly elliptic problems, Studies in Mathematical Analysis, 1962, California: Stanford University Press 424-428

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/