Convergence to a single wave in the Fisher-KPP equation

James Nolen , Jean-Michel Roquejoffre , Lenya Ryzhik

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (2) : 629 -646.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (2) : 629 -646. DOI: 10.1007/s11401-017-1087-4
Article

Convergence to a single wave in the Fisher-KPP equation

Author information +
History +
PDF

Abstract

The authors study the large time asymptotics of a solution of the Fisher-KPP reaction-diffusion equation, with an initial condition that is a compact perturbation of a step function. A well-known result of Bramson states that, in the reference frame moving as 2t−(3/2)log t+x , the solution of the equation converges as t → +∞ to a translate of the traveling wave corresponding to the minimal speed c * = 2. The constant x depends on the initial condition u(0, x). The proof is elaborate, and based on probabilistic arguments. The purpose of this paper is to provide a simple proof based on PDE arguments.

Keywords

Traveling waves / KPP / Front propagation / Asymptotic analysis / Reaction-diffusion

Cite this article

Download citation ▾
James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik. Convergence to a single wave in the Fisher-KPP equation. Chinese Annals of Mathematics, Series B, 2017, 38(2): 629-646 DOI:10.1007/s11401-017-1087-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aïdékon E., Berestycki J., Brunet Shi Z.. Branching Brownian motion seen from its tip. Probab. Theory Relat. Fields, 2013, 157: 405-451

[2]

Arguin L.-P., Bovier A., Kistler N.. Poissonian statistics in the extremal process of branching Brownian motion. Ann. Appl. Probab., 2012, 22: 1693-1711

[3]

Arguin L.-P., Bovier A., Kistler N.. The extremal process of branching Brownian motion. Probab. Theory Relat. Fields, 2013, 157: 535-574

[4]

Berestycki H., Hamel F.. Front propagation in periodic excitable media. Comm. Pure Appl. Math., 2002, 55: 949-1032

[5]

Bramson M. D.. Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math., 1978, 31: 531-581

[6]

Bramson M. D.. Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc., 1983 44

[7]

Brunet E., Derrida B.. A branching random walk seen from the tip. Journal of Statistical Physics., 2011, 143: 420-446

[8]

Brunet E., Derrida B.. Statistics at the tip of a branching random walk and the delay of traveling waves. Eur. Phys. Lett., 2009, 87: 60010

[9]

Fang M., Zeitouni O.. Slowdown for time inhomogeneous branching Brownian motion. J. Stat. Phys., 2012, 149: 1-9

[10]

Fisher R. A.. The wave of advance of advantageous genes. Ann. Eugenics, 1937, 7: 353-369

[11]

Hamel F., Nolen J., Roquejoffre J.-M., Ryzhik L.. A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Netw. Het. Media, 2013, 8: 275-289

[12]

Hamel F., Nolen J., Roquejoffre J.-M., Ryzhik L.. The logarithmic time delay of KPP fronts in a periodic medium. J. Europ. Math. Soc., 2016, 18: 465-505

[13]

Hamel F., Roques L.. Uniqueness and stability properties of monostable pulsating fronts. J. Europ. Math. Soc., 2011, 13: 345-390

[14]

Henderson C.. Population stabilization in branching Brownian motion with absorption and drift. Comm. Math. Sci., 2016, 14: 973-985

[15]

Kolmogorov A. N., Petrovskii I. G., Piskunov N. S.. Étude de l’équation de la diffusion avec croissance de la quantité dematière et son application à un problème biologique. Bull. Univ. État Moscou, Sér. Inter. A, 1937, 1: 1-26

[16]

Lalley S. P., Sellke T.. A conditional limit theorem for the frontier of a branching Brownian motion. Annals of Probability, 1987, 15: 1052-1061

[17]

Lau K.-S.. On the nonlinear diffusion equation of Kolmogorov, Petrovskii and Piskunov. J. Diff. Eqs., 1985, 59: 44-70

[18]

Maillard, P. and Zeitouni, O., Slowdown in branching Brownian motion with inhomogeneous variance, Ann. IHP Prob. Stat., to appear.

[19]

McKean, H. P., Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov, Comm. Pure Appl. Math., 28 1975, 323–331.

[20]

Nolen J., Roquejoffre J.-M., Ryzhik L.. Power-like delay in time inhomogeneous Fisher-KPP equations. Comm. Partial Diff. Equations, 2015, 40: 475-505

[21]

Nolen J., Roquejoffre J.-M., Ryzhik L.. Refined large-time asymptotics for the Fisher-KPP equation, 2016

[22]

Roberts M.. A simple path to asymptotics for the frontier of a branching Brownian motion. Ann. Prob., 2013, 41: 3518-3541

[23]

Roquejoffre J.-M.. Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1997, 14: 499-552

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/