Bolzano’s theorems for holomorphic mappings

Jean Mawhin

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (2) : 563 -578.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (2) : 563 -578. DOI: 10.1007/s11401-017-1083-8
Article

Bolzano’s theorems for holomorphic mappings

Author information +
History +
PDF

Abstract

The existence of a zero for a holomorphic functions on a ball or on a rectangle under some sign conditions on the boundary generalizing Bolzano’s ones for real functions on an interval is deduced in a very simple way from Cauchy’s theorem for holomorphic functions. A more complicated proof, using Cauchy’s argument principle, provides uniqueness of the zero, when the sign conditions on the boundary are strict. Applications are given to corresponding Brouwer fixed point theorems for holomorphic functions. Extensions to holomorphic mappings from ℂ n to ℂ n are obtained using Brouwer degree.

Keywords

Holomorphic function / Hadamard-Shih’s conditions / Poincaré-Miranda’s conditions / Bolzano’s theorem / Cauchy’s theorem / Brouwer fixed point theorem / Brouwer degree

Cite this article

Download citation ▾
Jean Mawhin. Bolzano’s theorems for holomorphic mappings. Chinese Annals of Mathematics, Series B, 2017, 38(2): 563-578 DOI:10.1007/s11401-017-1083-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahlfors L.. Complex Analysis, 1966

[2]

Birkhoff G. D., Kellogg O. D.. Invariant points in function space. Trans. Amer. Math. Soc., 1922, 23: 96-115

[3]

Bolzano B.. Rein Analytisches Beweis des Lehrsatzes Dass Zwischen je ZweyWerthen, Die ein Entgegengesetzetes Resultat Gewähren, Wenigsten Eine Reelle Wurzel der Gleichung Liege, 1817

[4]

Cauchy A.. Mémoire sur les Intégrales Définies, Prises Entre des Limites Imaginaires. Oeuvres Complètes de Bure, Paris, 1825, 15(2): 41-89

[5]

Cauchy A.. Sur les compteurs logarithmiques appliqués au dénombrement et à la séparation des racines des équations transcendantes. Comptes Rendus Acad. Sci., Paris, 1857, 44: 257-268

[6]

Chabat B. V.. Introduction à l’analyse Complexe, 1992

[7]

Falk M.. Extrait d’une lettre adressée à M. Hermite. Bull. Sci. Math. Astr., 1883, 7(2): 137-139

[8]

Hadamard J.. Sur quelques applications de l’indice de Kronecker, in J. Tannery, Introduction à la Théorie des Fonctions D’une Variable, 1910 437-477

[9]

Kulpa W.. The Poincaré-Miranda theorem. Amer. Math. Monthly, 1997, 104: 545-550

[10]

Mawhin J.. A simple approach to Brouwer degree based on differential forms. Advanced Nonlinear Studies, 2004, 4: 535-548

[11]

Mawhin J.. Le théorème du point fixe de Brouwer: Un siècle de métamorphoses. Sciences et Techniques en Perspective, Blanchard, Paris, 2006, 10(1-2): 175-220

[12]

Mawhin J.. Variations on Poincaré-Miranda’s theorem. Advanced Nonlinear Studies, 2013, 13: 209-217

[13]

Poincaré H.. Sur certaines solutions particulières du problème des trois corps. Comptes Rendus Acad. Sci. Paris, 1883, 97: 251-252

[14]

Rabinowitz P. H.. A note on topological degree theory for holomorphic maps. Israel J. Math., 1973, 16: 46-52

[15]

Rabinowitz P. H.. Théorie du Degré Topologique et Applications à des Problèmes Non Linéaires, Rédigé par Henri Berestycki, 1973, Paris: Université Paris VIet CNRS

[16]

Shih M.-H.. Bolzano’s theorem in several complex variables. Proc. Amer. Math. Soc., 1980, 79: 32-34

[17]

Shih M.-H.. An analog of Bolzano’s theorem for functions of a complex variable. Amer. Math. Monthly, 1982, 89: 210-211

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/