Variational analysis of Toda systems

Andrea Malchiodi

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (2) : 539 -562.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (2) : 539 -562. DOI: 10.1007/s11401-017-1082-9
Article

Variational analysis of Toda systems

Author information +
History +
PDF

Abstract

The author surveys some recent progress on the Toda system on a twodimensional surface Σ, arising in models from self-dual non-abelian Chern-Simons vortices, as well as in differential geometry. In particular, its variational structure is analysed, and the role of the topological join of the barycentric sets of Σ is shown.

Keywords

Geometric PDEs / Variational Methods / Min-max Schemes

Cite this article

Download citation ▾
Andrea Malchiodi. Variational analysis of Toda systems. Chinese Annals of Mathematics, Series B, 2017, 38(2): 539-562 DOI:10.1007/s11401-017-1082-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aubin T.. Some Nonlinear Problems in Differential Geometry, 1998, New York: Springer-Verlag

[2]

Bahri T., Coron J. M.. On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain. Comm. Pure Appl. Math., 1988, 41: 253-294

[3]

Bartolucci D., de Marchis F., Malchiodi A.. Supercritical conformal metrics on surfaces with conical singularities. Int. Math. Res. Not., 2011, 2011(24): 5625-5643

[4]

Bartolucci D., Malchiodi A.. An improved geometric inequality via vanishing moments. with applications to singular Liouville equations, Comm. Math. Phys., 2013, 322(2): 415-452

[5]

Battaglia L.. Existence and multiplicity result for the singular Toda system. J. Math. Anal. Appl., 2015, 424(1): 49-85

[6]

Battaglia L., Mancini G.. A note on compactness properties of the singular Toda system. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 2015, 26(3): 299-307

[7]

Battaglia L., Jevnikar A., Malchiodi A., Ruiz D.. A general existence result for the Toda system on compact surfaces. Adv. in Math., 2015, 285: 937-979

[8]

Bolton J., Woodward L. M.. Some geometrical aspects of the 2-dimensional Toda equations (in Geometry), 1996 69-81

[9]

Brezis H., Merle F.. Uniform estimates and blow-up behavior for solutions of u = V (x)eu in two dimensions. Commun. Partial Differ. Equations, 1991, 16(8–9): 1223-1253

[10]

Calabi E.. Isometric imbedding of complex manifolds. Ann. Math., 1953, 58(2): 1-23

[11]

Carlotto A., Malchiodi A.. Weighted barycentric sets and singular Liouville equations on compact surfaces. J. Funct. Anal., 2012, 262(2): 409-450

[12]

Chanillo S., Kiessling M.. Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry. Comm. Math. Phys., 1994, 160: 217-238

[13]

Chen W. X., Li C.. Prescribing Gaussian curvatures on surfaces with conical singularities. J. Geom. Anal., 1991, 1(4): 359-372

[14]

Chen C. C., Lin C. S.. Topological degree for a mean field equation on Riemann surfaces. Comm. Pure Appl. Math., 2003, 56(12): 1667-1727

[15]

Chen X. X.. Remarks on the existence of branch bubbles on the blowup analysis of equation -u = e2u in dimension two. Commun. Anal. Geom., 1999, 7(2): 295-302

[16]

Chern S. S., Wolfson J. G.. Harmonic maps of the two-sphere into a complex Grassmann manifold,II. Ann. of Math., 1987, 125(2): 301-335

[17]

Daprile T., Pistoia A., Ruiz D.. Asymmetric blow-up for the SU(3) Toda system. J. Funct. Anal., 2016, 271(3): 495-531

[18]

Ding W., Jost J., Li J., Wang G.. The differential equation u = 8p-8pheu on a compact Riemann surface. Asian J. Math., 1997, 1: 230-248

[19]

Ding W., Jost J., Li J., Wang G.. Existence results for mean field equations. Ann. Inst. Henri Poincaré, Anal. Non Linèaire, 1999, 16(5): 653-666

[20]

Djadli Z.. Existence result for the mean field problem on Riemann surfaces of all genus. Comm. Contemp. Math., 2008, 10(2): 205-220

[21]

Djadli Z., Malchiodi A.. Existence of conformal metrics with constant Q-curvature. Ann. Math., 2008, 168(3): 813-858

[22]

Dunne G.. Self-dual Chern-Simons Theories, Lecture Notes in Physics, 1995, Berlin: Springer-Verlag

[23]

Hatcher A.. Algebraic Topology, 2002, Cambridge: Cambridge University Press

[24]

Jevnikar A., Kallel S., Malchiodi A.. A topological join construction and the Toda system on compact surfaces of arbitrary genus. Anal. PDE, 2015, 8(8): 1963-2027

[25]

Jost J., Lin C. S., Wang G.. Analytic aspects of the Toda system II,Bubbling behavior and existence of solutions. Comm. Pure Appl. Math., 2006, 59: 526-558

[26]

Jost J., Wang G.. Analytic aspects of the Toda system I, AMoser-Trudinger inequality. Comm. Pure Appl. Math., 2001, 54: 1289-1319

[27]

Kallel S., Karoui R.. Symmetric joins and weighted barycenters. Advanced Nonlinear Studies, 2011, 11: 117-143

[28]

Li J., Li Y.. Solutions for Toda systems on Riemann surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci., 2005, 5(4): 703-728

[29]

Li Y. Y.. Harnack type inequality: The method of moving planes. Commun. Math. Phys., 1999, 200(2): 421-444

[30]

Li Y. Y., Shafrir I.. Blow-up analysis for solutions of -?u = V eu in dimension two. Indiana Univ. Math. J., 1994, 43(4): 1255-1270

[31]

Lin C. S., Wei J., Yang W.. Degree counting and shadow system for SU(3) Toda system: One bubbling, 2014

[32]

Lin C. S., Wei J., Zhao C.. Sharp estimates for fully bubbling solutions of a SU(3) Toda system. Geom. Funct. Anal., 2012, 22(6): 1591-1635

[33]

Lin C. S., Zhang L.. A topological degree counting for some Liouville systems of mean field type. Comm. Pure Appl. Math., 2011, 64: 556-590

[34]

Lucia M.. A deformation lemma with an application to a mean field equation. Topol. Methods Nonlinear Anal., 2007, 30(1): 113-138

[35]

Malchiodi A.. Morse theory and a scalar field equation on compact surfaces. Adv. Diff. Eq., 2008, 13: 1109-1129

[36]

Malchiodi A., Ndiaye C. B.. Some existence results for the Toda system on closed surfaces. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2007, 18(4): 391-412

[37]

Malchiodi A., Ruiz D.. New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces. Geom. Funct. Anal., 2011, 21(5): 1196-1217

[38]

Malchiodi A., Ruiz D.. A variational analysis of the Toda system on compact surfaces. Comm. Pure Appl. Math., 2013, 66(3): 332-371

[39]

Malchiodi A., Ruiz D.. On the Leray-Schauder degree of the Toda system on compact surfaces. Proc. Amer. Math. Soc., 2015, 143(7): 2985-2990

[40]

Nolasco M., Tarantello G.. On a sharp Sobolev-type inequality on two-dimensional compact manifolds. Arch. Ration. Mech. Anal., 1998, 145: 161-195

[41]

Prajapat J., Tarantello G.. On a class of elliptic problems in R2: Symmetry and uniqueness results. Proc. Roy. Soc. Edinburgh, Ser. A, 2001, 131: 967-985

[42]

Struwe M.. On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv., 1985, 60: 558-581

[43]

Struwe M., Tarantello G.. On multivortex solutions in Chern-Simons gauge theory. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat., 1998, 8(1): 109-121

[44]

Tarantello G.. Self-Dual Gauge Field Vortices: An Analytical Approach, 2007, Boston, MA: Birkhäuser Boston

[45]

Yang Y.. Solitons in Field Theory and Nonlinear Analysis, 2001, New York: Springer-Verlag

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/