Dirac concentrations in a chemostat model of adaptive evolution

Alexander Lorz , Benoît Perthame , Cécile Taing

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (2) : 513 -538.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (2) : 513 -538. DOI: 10.1007/s11401-017-1081-x
Article

Dirac concentrations in a chemostat model of adaptive evolution

Author information +
History +
PDF

Abstract

This paper deals with a non-local parabolic equation of Lotka-Volterra type that describes the evolution of phenotypically structured populations. Nonlinearities appear in these systems to model interactions and competition phenomena leading to selection. In this paper, the equation on the structured population is coupled with a differential equation on the nutrient concentration that changes as the total population varies.

Different methods aimed at showing the convergence of the solutions to a moving Dirac mass are reviewed. Using either weak or strong regularity assumptions, the authors study the concentration of the solution. To this end, BV estimates in time on appropriate quantities are stated, and a constrained Hamilton-Jacobi equation to identify where the solutions concentrates as Dirac masses is derived.

Keywords

Adaptive evolution / Asymptotic behaviour / Chemostat / Dirac concentrations / Hamilton-Jacobi equations / Lotka-Volterra equations / Viscosity solutions

Cite this article

Download citation ▾
Alexander Lorz, Benoît Perthame, Cécile Taing. Dirac concentrations in a chemostat model of adaptive evolution. Chinese Annals of Mathematics, Series B, 2017, 38(2): 513-538 DOI:10.1007/s11401-017-1081-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ackleh A. S., Fitzpatrick B. G., Thieme H. R.. Rate distributions and survival of the fittest: A formulation on the space of measures (electronic). Discrete Contin. Dyn. Syst. Ser. B, 2005, 5(4): 917-928

[2]

Bardi M., Capuzzo-Dolcetta I.. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, 1997

[3]

Barles G.. Solutions de Viscosité des équations de Hamilton-Jacobi, 1994, Berlin Heidelberg: Springer-Verlag

[4]

Barles G., Evans L. C., Souganidis P. E.. Wavefront propagation for reaction diffusion systems of PDE. Duke Math. J., 1990, 61(3): 835-858

[5]

Barles G., Mirrahimi S., Perthame B.. Concentration in Lotka-Volterra parabolic or integral equations: A general convergence result. Methods Appl. Anal., 2009, 16(3): 321-340

[6]

Barles G., Perthame B.. Concentrations and constrained Hamilton-Jacobi equations arising in adpative dynamics. Contemporary Mathematics, 2007, 439: 57

[7]

Barles G., Perthame B.. Dirac concentrations in Lotka-Volterra parabolic PDEs. Indiana Univ. Math. J., 2008, 57(7): 3275-3301

[8]

Bethuel F., Brézis H., Helein F.. Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and Their Applications, 1994

[9]

Bouin E., Mirrahimi S.. A Hamilton-Jacobi limit for a model of population stuctured by space and trait. Comm. Math. Sci., 2015, 13(6): 1431-1452

[10]

Brézis H.. Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2010, New York: Springer-Verlag

[11]

Brézis H., Friedman A.. Nonlinear parabolic equations involving measures as initial conditions. J. Math. Pures App. (9), 1983, 62(1): 73-97

[12]

Brunel N., Hakim V.. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Computation, 1999, 11(7): 1621-1671

[13]

Carrillo J. A., Cuadrado S., Perthame B.. Adaptive dynamics via Hamilton-Jacobi approach and entropy methods for a juvenile-adult model. Mathematical Biosciences, 2007, 205(1): 137-161

[14]

Champagnat N.. Mathematical study of stochastic models of evolution belonging to the ecological theory of adaptive dynamics, 2004

[15]

Champagnat N., Ferrière R., Ben Arous G.. The canonical equation of adaptive dynamics: A mathematical view. Selection, 2002, 2(1): 73-83

[16]

Champagnat N., Ferrière R., Méléard S.. Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models. Theoretical Population Biology, 2006, 69(3): 297-321

[17]

Champagnat N., Ferrière R., Méléard S.. Individual-based probabilistic models of adaptive evolution and various scaling approximations, 59, Progress in Probability, 2008

[18]

Champagnat N., Jabin P.-E.. The evolutionary limit for models of populations interacting competitively via several resources. Journal of Differential Equations, 2011, 251(1): 176-195

[19]

Champagnat N., Jabin P.-E., Raoul G.. Convergence to equilibrium in competitive Lotka-Volterra equations and chemostat systems. C. R. Acad. Sci. Paris Sér. I Math., 2010, 348(23–24): 1267-1272

[20]

Crandall M. G., Ishii H., Lions P.-L.. User’s guide to viscosity solutions of second order partial differential equations. Bulletin of the American Mathematical Society, 1992, 27(1): 1-67

[21]

Desvillettes L., Jabin P.-E., Mischler S., Raoul G.. On mutation selection dynamics. Commun. Math. Sci., 2008, 6(3): 729-747

[22]

Dieckmann U., Law R.. The dynamical theory of coevolution: A derivation from stochastic ecological processes. J. Math. Biology, 1996, 34(5–6): 579-612

[23]

Diekmann O.. A beginner’s guide to adaptive dynamics. Banach Center Publications, 2004, 63: 47-86

[24]

Diekmann O., Jabin P.-E., Mischler S., Perthame B.. The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach. Theoretical Population Biology, 2005, 67(4): 257-271

[25]

Evans L. C., Souganidis P. E.. A PDE approach to geometric optics for certain semilinear parabolic equations. Indiana Univ. Math. J., 1989, 38(1): 141-172

[26]

Evans L. C.. Partial differential equations, 1998, Providence, RI: American Mathematical Society

[27]

Fleming W. H., Soner H. M.. Controlled Markov Processes and Viscosity Solutions, Applications of Mathematics 25, 1993, New York: Springer-Verlag

[28]

Geritz S. A. H., Kisdi E., Meszena G., Metz J. A. J.. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evolutionary Ecology, 1998, 12(1): 35-57

[29]

Hofbauer J., Sigmund K.. Evolutionary Games and Population Dynamics, 1998, Cambridge: Cambridge University Press

[30]

Hofbauer J., Sigmund K.. Evolutionary game dynamics. Bulletin of the American Mathematical Society, 2003, 40(4): 479-519

[31]

Freidlin M. I.. Functional Integration and Partial Differential Equations, 1985, Princeton: Princeton University Press 109

[32]

Freidlin M. I.. Limit theorems for large deviations and reaction-diffusion equations. The Annals of Probability, 1985, 13(3): 639-675

[33]

Lorz A., Mirrahimi S., Perthame B.. Dirac mass dynamics in multidimensional nonlocal parabolic equations. Commun. Part. Diff. Eq., 2011, 36(6): 1071-1098

[34]

Lorz A., Perthame B.. Long-term behaviour of phenotypically structured models. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2014, 470(2167): 20140089

[35]

Meszena G., Gyllenberg M., Jacobs F. J., Metz J. A. J.. Link between population dynamics and dynamics of Darwinian evolution. Physical Review Letters, 2005, 95(7): 078105

[36]

Mirrahimi S.. Phénomènes de concentration dans certaines EDPs issues de la biologie, 2011, Curie-Paris VI: Universit é Pierre et Marie

[37]

Mirrahimi S.. Adaptation and migration of a population between patches. Discrete and Continuous Dynamical System -B (DCDS-B), 2013, 18.3s: 753-768

[38]

Mirrahimi, S. and Perthame, B., Asymptotic analysis of a selection model with space, J. Math. Pures Appl., to appear.

[39]

Mirrahimi, S., Perthame, B., Bouin, E. and Millien, P., Population formulation of adaptative mesoevolution: Theory and dynamics, J. F. Rodrigues and F. Chalub (eds.), The Mathematics of Darwin’s Legacy, Mathematics and Biosciences in Interaction, Springer-Verlag, New York, 2011.

[40]

Mirrahimi S., Roquejoffre J.-M.. Uniqueness in a class of Hamilton-Jacobi equations with constraints, 2015

[41]

Perthame B.. Transport equations in biology, Frontiers in Mathematics, 2007, Basel: Birkhäuser-Verlag

[42]

Raoul G.. Etude qualitative et numérique d’équations aux dérivées partielles issues des sciences de la nature, 2009

[43]

Raoul G.. Local stability of evolutionary attractors for continuous structured populations. Monatsh Math., 2012, 165(1): 117-144

[44]

Smith H. L., Waltman P.. The Theory of the Chemostat: Dynamics of Microbial Competition, 1994, Cambridge: Cambridge Univ. Press

[45]

Maynard Smith J.. Evolution and the Theory of Games, 1982, Cambridge: Cambridge Univ. Press

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/