Extremum problems of Laplacian eigenvalues and generalized Polya conjecture
Fanghua Lin
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (2) : 497 -512.
Extremum problems of Laplacian eigenvalues and generalized Polya conjecture
In this survey on extremum problems of Laplacian-Dirichlet eigenvalues of Euclidian domains, the author briefly presents some relevant classical results and recent progress. The main goal is to describe the well-known conjecture due to Polya, its connections to Weyl’s asymptotic formula for eigenvalues and shape optimizations. Many related open problems and some preliminary results are also discussed.
Extremum problems / Laplacian eigenvalues / Weyl asymptotics / Polya’s conjecture / Spliting equality / Regularity of minimizers
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
/
| 〈 |
|
〉 |