Extremum problems of Laplacian eigenvalues and generalized Polya conjecture

Fanghua Lin

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (2) : 497 -512.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (2) : 497 -512. DOI: 10.1007/s11401-017-1080-y
Article

Extremum problems of Laplacian eigenvalues and generalized Polya conjecture

Author information +
History +
PDF

Abstract

In this survey on extremum problems of Laplacian-Dirichlet eigenvalues of Euclidian domains, the author briefly presents some relevant classical results and recent progress. The main goal is to describe the well-known conjecture due to Polya, its connections to Weyl’s asymptotic formula for eigenvalues and shape optimizations. Many related open problems and some preliminary results are also discussed.

Keywords

Extremum problems / Laplacian eigenvalues / Weyl asymptotics / Polya’s conjecture / Spliting equality / Regularity of minimizers

Cite this article

Download citation ▾
Fanghua Lin. Extremum problems of Laplacian eigenvalues and generalized Polya conjecture. Chinese Annals of Mathematics, Series B, 2017, 38(2): 497-512 DOI:10.1007/s11401-017-1080-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arendt W., Nittka R., Peter W., Steiner F.. Weyl’s Law, Spectral Properties of the Laplacian in Mathematics and Physics. Math. Anal. of Evolution, Information, and Complexty, 2009, Weihreim: Wiley-VCH Verlag GmbH Co. KGaA 1-71

[2]

Ashbaush M. S.. The universal eigenvalue bounds of Payne-Polya-Weinberger. Proc. Indian Acad. Sci. Math. Sci., 2002, 112: 3-20

[3]

Bandle C.. Isoperimetric Inequalities and Applications, Monographs and Studies in Math., 1980 7

[4]

Berezin F.. Covariant and contravariant symbols of operators. Izv. Akad. Nauk SSSR, 1972, 37: 1134-1167

[5]

Birman M. S., Solomyak M. Z.. The principle term of spectral asymptotics for “non-smooth” elliptic problems. Functional Anal. Appl., 1970, 4: 1-13

[6]

Bucur D.. Minimization of the k-th eigenvalue of the Dirichlet Laplacian. Arch. Rat. Mech. Anal., 2012, 206: 1073-1083

[7]

Bucur D., Buttazzo G.. Variational methods in shape optimization problems, Progress in Nonlinear Diff. Equ.’s and their Applications, 2005

[8]

Bucur D., Dal Maso G.. An existence result of a class of shape optimization problems. Arch. Rat. Mech. Anal., 1993, 122: 183-195

[9]

Bucur D., Henrot A.. Minimization of the third eigenvalue of the Dirichlet Laplacian, R. Soc. London Proc. Ser. A. Math. Phys. Eng. Sci., 2000, 456: 985-996

[10]

Bucur D., Mazzoleni D., Pratelli A., Velichkov B.. Lipschitz regulairity of the eigenfunctions on optimal domains. Arch. Rat. Mech. Anal., 2015, 216: 117-151

[11]

Caffarelli L., Lin F. H.. An optimal partition problem for eigenvalues. J. Sci. Comput., 2007, 31: 5-18

[12]

Caffarelli L., Lin F. H.. Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Amer. Math. Soc., 2008, 21: 847-62

[13]

Chavel I.. Eigenvalues in Riemannian Geometry, Pure and Appl. Math., 1984, New York: Academic Press 115

[14]

Courant R., Hilbert D.. Methods of Mathematical Physics, 1953, New York: Wiley

[15]

Davies E. B.. Spectral Theory of Differential Operators, 1995, Cambridge: Cambridge Univ. Press

[16]

Guillemin V. M.. Lectures on spectral theory of elliptic operators. Duke Math. J., 1977, 44: 485-517

[17]

Helffer B.. On spectral minimal partitions: A survey. Milan J. Math., 2010, 78: 575-590

[18]

Henrot A.. Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Math., 2006

[19]

Kac M.. Can one hear the shape of a drum?. Amer. Math. Monthly, 1966, 73(3): 1-23

[20]

Keller J. B., Wolf S. A.. Range of the first two eigenvalues of the Laplacian. Proc. R. Soc. London A, 1994, 447: 397-412

[21]

Kriventsov D., Lin F. H.. Regularity for shape optimizer: The non-degenerate case, 2016

[22]

Laptev A.. Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces. J. Funct. Anal., 1997, 151: 531-545

[23]

Li P., Yau S. T.. On the Schrodinger equation and the eigenvalues problems. Comm. Math. Phys., 1983, 88: 309-318

[24]

Mazzoleni D., Pratelli A.. Existence of minimizers for spectral problems. J. Math. Pures Appl., 2013, 100: 433-453

[25]

Melrose R.. Weyl’s conjecture for manifolds with concave boundary. Proc. Sympos. Pure Math., 1980, 36: 257-274

[26]

Netrusov Y., Safarov Y.. Weyl asymptotic formula for the Laplacian on domains with rough boundaries. Comm. Math. Phys., 2005, 253(2): 481-509

[27]

Polya G.. On the eigenvalues of vibrating membranes. Proc. London Math. Soc., 1961, 11(3): 419-433

[28]

Polya G., Szegö G.. Isoperimetric Inequalities in Mathematical Physics, 1951, Princeton: Princeton Univ. Press

[29]

Sverak V.. On optimal shape design. J. Math. Pures Appl., 1993, 72(6): 537-551

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/