Time discrete approximation of weak solutions to stochastic equations of geophysical fluid dynamics and applications

Nathan Glatt-Holtz , Roger Temam , Chuntian Wang

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (2) : 425 -472.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (2) : 425 -472. DOI: 10.1007/s11401-017-1077-6
Article

Time discrete approximation of weak solutions to stochastic equations of geophysical fluid dynamics and applications

Author information +
History +
PDF

Abstract

As a first step towards the numerical analysis of the stochastic primitive equations of the atmosphere and the oceans, the time discretization of these equations by an implicit Euler scheme is studied. From the deterministic point of view, the 3D primitive equations are studied in their full form on a general domain and with physically realistic boundary conditions. From the probabilistic viewpoint, this paper deals with a wide class of nonlinear, state dependent, white noise forcings which may be interpreted in either the Itô or the Stratonovich sense. The proof of convergence of the Euler scheme, which is carried out within an abstract framework, covers the equations for the oceans, the atmosphere, the coupled oceanic-atmospheric system as well as other related geophysical equations. The authors obtain the existence of solutions which are weak in both the PDE and probabilistic sense, a result which is new by itself to the best of our knowledge.

Keywords

Nonlinear stochastic partial differential equations / Geophysical fluid dynamics / Primitive equations / Discrete time approximation / Martingale solutions / Numerical analysis of stochastic PDEs

Cite this article

Download citation ▾
Nathan Glatt-Holtz, Roger Temam, Chuntian Wang. Time discrete approximation of weak solutions to stochastic equations of geophysical fluid dynamics and applications. Chinese Annals of Mathematics, Series B, 2017, 38(2): 425-472 DOI:10.1007/s11401-017-1077-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arnold L.. Stochastic differential equations: Theory and applications, translated from the German, 1974, New York: Wiley-Interscience, John Wiley Sons

[2]

Aubin J.-P.. Approximation of elliptic boundary-value problems, Wiley-Interscience, Pure and Applied Mathematics, 1972, New York-London-Sydney: A Division of John Wiley Sons, Inc.

[3]

Brzézniak Z., Carelli E., Prohl A.. Finite-element-based discretizations of the incompressible Navier-Stokes equations with multiplicative random forcing. IMA J. Numer. Anal., 2013, 33(3): 771-824

[4]

Bensoussan A.. Stochastic Navier-Stokes equations. Acta Appl. Math., 1995, 38(3): 267-304

[5]

Billingsley P.. Convergence of probability measures, 1999, New York: John Wiley Sons Inc.

[6]

Bjerknes V.. Das problem der wettervorhersage. betrachtet vom standpunkte der mechanik und der physik, Meteorol. Z., 1904, 21: 1-7

[7]

Brézis H.. Problèmes unilatéraux. J. Math. Pures Appl., 1972, 51(9): 1-168

[8]

Browder F. E.. Nonlinear monotone and accretive operators in Banach spaces. Proc. Nat. Acad. Sci. U.S.A., 1968, 61: 388-393

[9]

Berner J., Shutts G. J., Leutbecher M., Palmer T. N.. A spectral stochastic kinetic energy backscatter scheme and its impact on ow-dependent predictability in the ecmwf ensemble prediction system. J. Atmospheric Sci., 2009, 66(3): 603-626

[10]

Bensoussan A., Temam R.. Équations stochastiques du type Navier-Stokes. J. Functional Analysis, 1973, 13: 195-222

[11]

Castaing C.. Sur les multi-applications measurables. Rev. Fran¸caise Informat. Recherche Opérationnell, 1967, 1(1): 91-126

[12]

Chueshov I., Millet A.. Stochastic two-dimensional hydrodynamical systems: Wong-Zakai approximation and support theorem. Stoch. Anal. Appl., 2011, 29(4): 570-611

[13]

Cao C., Titi E.. Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. (2), 2007, 166(1): 245-267

[14]

de Bouard A., Debussche A.. A semi-discrete scheme for the stochastic nonlinear Schrödinger equation. Numer. Math., 2004, 96(4): 733-770

[15]

Debussche A., Glatt-Holtz N., Temam R.. Local martingale and pathwise solutions for an abstract uids model. Phys. D, 2011, 240(14–15): 1123-1144

[16]

Debussche A., Glatt-Holtz N., Temam R., Ziane M.. Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise. Nonlinearity, 2012, 25(7): 2093-2118

[17]

Debussche A., Printems J.. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete Contin. Dyn. Syst. Ser. B, 2006, 6(4): 761-781

[18]

Da Prato G., Debussche A.. Two-dimensional Navier-Stokes equations driven by a space-time white noise. J. Funct. Anal., 2002, 196(1): 180-210

[19]

Da Prato G., Zabczyk J.. Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and Its Applications, 1992, Cambridge: Cambridge University Press

[20]

Dunford N., Schwartz J. T.. Linear Operators, Part I, Wiley Classics Library, 1988, New York: John Wiley Sons Inc.

[21]

Dudley R. M.. Real analysis and probability, Cambridge Studies in Advanced Mathematics, 2002, Cambridge: Cambridge University Press

[22]

Durrett R.. Probability: Theory and examples, 2010, Cambridge: Cambridge University Press

[23]

Ewald B., Penland C.. Numerical generation of stochastic differential equations in climate models, Special Volume on Computational Methods for the Atmosphere and the Oceans, Handbook of Numerical Analysis, 2009 279-306

[24]

Ewald B., Petcu M., Temam R.. Stochastic solutions of the two-dimensional primitive equations of the ocean and atmosphere with an additive noise. Anal. Appl. (Singap.), 2007, 5(2): 183-198

[25]

Flandoli F., Gatarek D.. Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Related Fields, 1995, 102(3): 367-391

[26]

Folland G. B.. Real analysis, 1999, New York: John Wiley Sons Inc.

[27]

Guo B., Huang D.. 3D stochastic primitive equations of the large-scale ocean: Global well-posedness and attractors. Comm. Math. Phys., 2009, 286(2): 697-723

[28]

Gyöongy I., Millet A.. On discretization schemes for stochastic evolution equations. Potential Anal., 2005, 23(2): 99-134

[29]

Grecksch W., Schmalfuß B.. Approximation of the stochastic Navier-Stokes equation. Mat. Apl. Comput., 1996, 15(3): 227-239

[30]

Glatt-Holtz N., Temam R.. Cauchy convergence schemes for some nonlinear partial differential equations. Applicable Analysis, 2011, 90(1): 85-102

[31]

Glatt-Holtz N., Temam R.. Pathwise solutions of the 2-D stochastic primitive equations. Applied Mathematics and Optimization, 2011, 63(3): 401-433

[32]

Glatt-Holtz, N., Temam, R. and Tribbia, J., Some remarks on the role of stochastic parameterization in the equations of the ocean and atmosphere, in preparation.

[33]

Glatt-Holtz, N., Temam, R. and Wang C., Numerical analysis of the stochastic Navier-Stokes equations: Stability and convergence results, in preparation.

[34]

Glatt-Holtz N., Vicol V. C.. Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise. Ann. Probab., 2014, 42(1): 80-145

[35]

Glatt-Holtz N., Ziane M.. The stochastic primitive equations in two space dimensions with multiplicative noise. Discrete Contin, Dyn. Syst. Ser. B, 2008, 10(4): 801-822

[36]

Hasselmann K.. Stochastic climate models. part I: Theory, Tellus, 1976, 28: 474-485

[37]

Horsthemke W., Lefever R.. Noise-induced transitions: Theory and applications in physics, chemistry and biology, 1984, New York: Springer-Verlag

[38]

Kobelkov G. M.. Existence of a solution “in the large” for the 3D large-scale ocean dynamics equations. C. R. Math. Acad. Sci. Paris, 2006, 343(4): 283-286

[39]

Kobelkov G. M.. Existence of a solution “in the large” for ocean dynamics equations. J. Math. Fluid Mech., 2007, 9(4): 588-610

[40]

Kloeden P., Platen E.. Numerical solution of stochastic differential equations, Applications of Mathematics, 1992, Berlin: Springer-Verlag

[41]

Kuratowski K., Ryll-Nardzewski C.. A general theorem on selectors. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 1965, 13: 397-403

[42]

Karatzas I., Shreve S. E.. Brownian motion and stochastic calculus, 1991, New York: Springer-Verlag

[43]

Kukavica I., Ziane M.. On the regularity of the primitive equations of the ocean. Nonlinearity, 2007, 20(12): 2739-2753

[44]

Leray J., Lions J.-L.. Quelques résulatats de Visik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder (in France). Bull. Soc. Math., 1965, 93: 97-107

[45]

Leslie D. C., Quarini G. L.. The application of turbulence theory to the formulation of subgrid modelling procedures. Journal of Fluid Mechanics, 1979, 91: 65-91

[46]

Lions J.-L., Temam R., Wang S. H.. New formulations of the primitive equations of atmosphere and applications. Nonlinearity, 1992, 5(2): 237-288

[47]

Lions J.-L., Temam R., Wang S. H.. On the equations of the large-scale ocean. Nonlinearity, 1992, 5(5): 1007-1053

[48]

Lions J.-L., Temam R., Wang S.. Models for the coupled atmosphere and ocean (CAO I,II). Comput. Mech. Adv., 1993, 1(1): 120

[49]

Minty G. J.. Monotone (nonlinear) operators in Hilbert space. Duke Math. J., 1962, 29: 341-346

[50]

Manna U., Menaldi J. L., Sritharan S. S.. Stochastic 2-D Navier-Stokes equation with artificial compressibility. Commun. Stoch. Anal., 2007, 1(1): 123-139

[51]

Menaldi J. L., Sritharan S. S.. Stochastic 2-D Navier-Stokes equation. Appl. Math. Optim., 2002, 46(1): 31-53

[52]

Mason P. J., Thomson D. J.. Stochastic backscatter in large-eddy simulations of boundary layers. Journal of Fluid Mechanics, 1992, 242: 51-78

[53]

Marion M., Temam R.. Navier-Stokes equations: theory and approximation, Handbook of numerical analysis, 1998 503-688

[54]

Øksendal B.. Stochastic Differential Equations, An Introduction with Applications, 2003, Berlin: Springer-Verlag

[55]

Penland C., Ewald B. D.. On modelling physical systems with stochastic models: Diffusion versus Lévy processes. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2008, 366(1875): 2457-2476

[56]

Pedlosky J.. Geophysical uid Dynamics, 1982, New York: Springer-Verlag

[57]

Penland C.. A stochastic approach to nonlinear dynamics: A review. Bulletin of the American Meteorological Society, 2003, 84: ES43-ES51

[58]

Prévot C., Röockner M.. A concise course on stochastic partial differential equations, Lecture Notes in Mathematics, 2007, Berlin: Springer-Verlag 1905

[59]

Penland C., Sardeshmukh P. D.. The optimal growth of tropical sea surface temperature anomalies. Journal of Climate, 1995, 8(8): 1999-2024

[60]

Petcu M., Temam R., Ziane M.. Some mathematical problems in geophysical fluid dynamics. Special Volume on Computational Methods for the Atmosphere and the Oceans, Handbook of Numerical Analysis, 2008, 14: 577-750

[61]

Richardson L. F.. Weather prediction by numerical process, with a foreword by Peter Lynch, 2007, Cambridge: Cambridge Mathematical Library, Cambridge University Press

[62]

Rose H. A.. Eddy diffusivity. eddy noise and subgrid-scale modelling, Journal of Fluid Mechanics, 1977, 81: 719-734

[63]

Rozovskii B., Temam R., Tribbia J.. AIMWorkshop: Mathematical and Geophysical Fluid Dynamics, 2006, Palo Alto: Analytical and Stochastic Methods

[64]

Rousseau A., Temam R. M., Tribbia J. J.. Boundary value problems for the inviscid primitive equations in limited domains. Handbook of numerical analysis, Vol. XIV, Special volume: Computational methods for the atmosphere and the oceans, Handb. Numer. Anal., 2009, 14: 481-575

[65]

Revuz D., Yor M.. Continuous martingales and Brownian motion, 1999, Berlin: Springer-Verlag 293

[66]

Schwartz L.. Radon measures on arbitrary topological spaces and cylindrical measures, 1973

[67]

Temam R.. Sur l’approximation des solutions des équations de Navier-Stokes. C. R. Acad. Sci. Paris Sér. A-B, 1966, 262: A219-A221

[68]

Temam R.. Une méthode d’approximation de la solution des équations de Navier-Stokes (in France). Bull. Soc. Math., 1968, 96: 115-152

[69]

Temam R.. Navier-Stokes equations and nonlinear functional analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, 1983, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM)

[70]

Temam R.. Navier-Stokes equations and nonlinear functional analysis, 2nd edition, CBMS-NSF Regional Conference Series in Applied Mathematics, 1995, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM) 66

[71]

Temam R.. Navier-Stokes Equations: Theory and Numerical Analysis, 2001

[72]

Twardowska K.. An approximation theorem of Wong-Zakai type for stochastic Navier-Stokes equations. Rend. Sem. Mat. Univ. Padova, 1996, 96: 15-36

[73]

Tessitore G., Zabczyk J.. Wong-Zakai approximations of stochastic evolution equations. J. Evol. Equ., 2006, 6(4): 621-655

[74]

Wong E., Zakai M.. On the relation between ordinary and stochastic differential equations. Internat. J. Engrg. Sci., 1965, 3: 213-229

[75]

Zidikheri M. J., Frederiksen J. S.. Stochastic subgrid-scale modelling for non-equilibrium geophysical ows. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1910): 145-160

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/