On 3-submanifolds of S 3 which admit complete spanning curve systems

Yan Zhao , Fengchun Lei , Fengling Li

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (6) : 1373 -1380.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (6) : 1373 -1380. DOI: 10.1007/s11401-017-1045-1
Article

On 3-submanifolds of S 3 which admit complete spanning curve systems

Author information +
History +
PDF

Abstract

Let M be a compact connected 3-submanifold of the 3-sphere S 3 with one boundary component F such that there exists a collection of n pairwise disjoint connected orientable surfaces S = {S 1, · · ·, S n} properly embedded in M, ∂S = {∂S 1, · · ·, ∂S n} is a complete curve system on F. We call S a complete surface system for M, and ∂S a complete spanning curve system for M. In the present paper, the authors show that the equivalent classes of complete spanning curve systems for M are unique, that is, any complete spanning curve system for M is equivalent to ∂S. As an application of the result, it is shown that the image of the natural homomorphism from the mapping class group M(M) to M(F) is a subgroup of the handlebody subgroup H n.

Keywords

Complete surface system / Complete spanning curve system / Heegaard diagram / Handlebody addition

Cite this article

Download citation ▾
Yan Zhao, Fengchun Lei, Fengling Li. On 3-submanifolds of S 3 which admit complete spanning curve systems. Chinese Annals of Mathematics, Series B, 2017, 38(6): 1373-1380 DOI:10.1007/s11401-017-1045-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fomenko A. T., Matveev S. V.. Algorithmic and Computer Methods for Three-Manifolds, 1997, Netherlands: Springer-Verlag

[2]

Fox R.. On imbeddings of polyhedra in 3-space. Annals of Math., 1948, 49(2): 462-470

[3]

Gordon C. M.c.A., Luecke J.. Knots are determined by their complements. J. Amer. Math. Soc., 1989, 2: 371-415

[4]

Haken, W., Various aspects of the 3-dimensional Poincaré problem, Topology of Manifolds (Cantrell, J. C. and Edward, C. H., Jr. (eds.)) Markham, Chicago, 1970, 140–152.

[5]

Heegaard P.. Forstudier til en Topologisk Teori for de Algebraiske Fladers Sammenhaeng, 1898, Bojesen: Ph.D. thesis

[6]

Hempel, J., 3-manifolds, Annals of Math. Studies, 86, Princeton University Press, Princeton, N. J. 1976.

[7]

Jaco W.. Lectures on three manifold topology. CBMS Regional Conference Series in Mathematics, 1980

[8]

Lei F. C.. Complete systems of surfaces in 3-manifolds. Math. Proc. Camb. Phil. Soc., 1997, 122: 185-191

[9]

Lei F. C.. On stability of Heegaard splittings. Math. Proc. Camb. Phil. Soc., 2000, 129: 55-57

[10]

Matsuda H., Ozawa M., Shimokawa K.. On non-simple reflexive links. J. Knot Theory and Its Ramifications, 2002, 11: 787-791

[11]

Nakamura K.. Fox reimbedding and Bing submanifolds. Trans. Amer. Math. Soc., 2015, 367(12): 8325-8346

[12]

Oertel U.. Automorphisms of three-dimensional handlebodies. Topology, 2002, 41(2): 363-410

[13]

Ozawa, M. and Shimokawa, K., Dehn surgery and Seifert surface system, arXiv: 1406.6264 [math.GT].

[14]

Perelman, G., The entropy formula for the Ricci flow and its geometric applications, arXiv: math/0211159 [math.DG].

[15]

Rego E., Rourke C.. Heegaard diagrams and homotopy 3-spheres. Topology, 1988, 27(2): 137-143

[16]

Rolfsen D.. Knots and Links, 1978, Berkeley, CA: Publish or Perish

[17]

Scharlemann M., Thompson A.. Surfaces, submanifolds, and aligned Fox reimbedding in non-Haken 3-manifolds. Proc. Amer. Math. Soc., 2005, 133: 1573-1580

[18]

Waldhausen F.. Heegaard-Zerlegungen der 3-sphäre. Topology, 1968, 7: 195-203

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/