Difference cochains and Reidemeister traces

Baoqun Zhang , Xuezhi Zhao

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (6) : 1365 -1372.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (6) : 1365 -1372. DOI: 10.1007/s11401-017-1044-2
Article

Difference cochains and Reidemeister traces

Author information +
History +
PDF

Abstract

The authors consider the difference of Reidemeister traces and difference cochain of given two self-maps, and find out a relation involving these two invariants. As an application, an inductive formula of the Reidemeister traces for self-maps on a kind of CW-complex, including spherical manifolds is obtained.

Keywords

Fixed point / Reidemeister trace / Difference cochain / Spherical manifold

Cite this article

Download citation ▾
Baoqun Zhang, Xuezhi Zhao. Difference cochains and Reidemeister traces. Chinese Annals of Mathematics, Series B, 2017, 38(6): 1365-1372 DOI:10.1007/s11401-017-1044-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baues, H. J., Obstruction Theory on Homotopy Classification of Maps, Lecture Notes in Mathematics, 628, Springer-Verlag, Berlin, Heidelberg, New York, 1977.

[2]

Borsari L., Gonçalves D.. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold. Topol. Methods Nonlinear Anal., 2003, 21(1): 115-130

[3]

Du X.. On self-mapping degrees of S 3-geometry manifolds. Acta Math. Sin. (Engl. Ser.), 2009, 25: 1243-1252

[4]

Fadell E., Husseini S.. Fixed point theory for non-simply-connected manifolds. Topology, 1981, 20(1): 53-92

[5]

Fuller F. B.. The homotopy theory of coincidences. Ann. of Math., 1954, 59(2): 219-226

[6]

Geoghegan R.. Daverman R. J., Sher R. B.. Nielsen fixed point theory. Handbook of Geometric Topology, 2001 499-521

[7]

Gonçalves D.. Coincidence theory for maps from a complex into a manifold. Topology Appl., 1999, 92(1): 63-77

[8]

Gonçalves D., Jezierski J.. Lefschetz coincidence formula on non-orientable manifolds. Fund. Math., 1997, 153(1): 1-23

[9]

Gonçalves D., Jezierski J., Wong P.. Obstruction theory and coincidences in positive codimension. Acta Math. Sin. (Engl. Ser.), 2006, 22(5): 1591-1602

[10]

Gonçalves D., Penteado D., Vieira J. P.. Abelianized obstruction for fixed points of fiber-preserving maps of surface bundles. Topol. Methods Nonlinear Anal., 2009, 33(2): 293-305

[11]

Gonçalves D., Wong P., Zhao X.. Fixed point theory of spherical 3-manifolds. Topology Appl., 2015, 181: 134-149

[12]

Husseini S.. Generalized Lefschetz numbers. Trans. Amer. Math. Soc., 1982, 272: 247-274

[13]

Jezierski J.. Nielsen number of a covering map. Fixed Point Theory and Applications, 2006, 2006: 1-11

[14]

Jiang, B., Lecture on Nielsen fixed point theory, Contemporary Math., 14, Amer. Math. Soc., Providence, RI, 1983.

[15]

Kim S. W., Lee J. B., Lee K. B.. Averaging formula for Nielsen numbers. Nagoya Math. J., 2005, 178: 37-53

[16]

Olum P.. On mappings into spaces in which certain homotopy groups vanish. Ann. of Math., 1953, 57: 561-574

[17]

Olum P.. Mappings of manifolds and the notion of degree. Ann. of Math., 1953, 58: 458-480

[18]

Reidemeister K.. Automorphism von Homotopiekettenringen. Math. Ann., 1936, 112: 586-593

[19]

tomDieck T.. Transformation Group, 1987, Berlin, New York: Walter de Gruyter

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/