On the equivalence of integral T k-cohomology Chern numbers and T k-K-theoretic Chern numbers

Wei Wang

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (6) : 1353 -1364.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (6) : 1353 -1364. DOI: 10.1007/s11401-017-1043-3
Article

On the equivalence of integral T k-cohomology Chern numbers and T k-K-theoretic Chern numbers

Author information +
History +
PDF

Abstract

This paper mainly deals with the question of equivalence between equivariant cohomology Chern numbers and equivariant K-theoretic Chern numbers when the transformation group is a torus. By using the equivariant Riemann-Roch relation of Atiyah-Hirzebruch type, it is proved that the vanishing of equivariant cohomology Chern numbers is equivalent to the vanishing of equivariant K-theoretic Chern numbers.

Keywords

Equivariant K-theoretic Chern number / Equivariant cohomology Chern number / Equivariant bordism

Cite this article

Download citation ▾
Wei Wang. On the equivalence of integral T k-cohomology Chern numbers and T k-K-theoretic Chern numbers. Chinese Annals of Mathematics, Series B, 2017, 38(6): 1353-1364 DOI:10.1007/s11401-017-1043-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

René T.. Quelques propriétés globales des variétés différentiables. Commentarii Mathematici Helvetici, 1954, 28: 17-86

[2]

Atiyah M. F.. K-Theory, 1967, New York: Benjamin

[3]

Atiyah M. F., Hirzebruch F.. Riemann-Roch theorems for differentiable manifolds. Bull. Amer. Math. Soc., 1959, 65: 276-281

[4]

Atiyah M. F., Hirzebruch F.. Analytic cycles on complex manifolds. Topology, 1962, 1: 25-45

[5]

Conner, P. E. and Floyd, E. E., The relation of cobordism to K-theories, Lecture Notes in Mathematics, 28, Springer-Verlag, Berlin, New York, 1966.

[6]

Hanke B.. Geometric versus homotopy theoretic equivariant bordism. Math. Ann., 2005, 332(3): 677-696

[7]

Hattori A.. Integral characteristic numbers for weakly almost complex manifolds. Topology, 1966, 5: 259-280

[8]

Hirzebruch F.. Topological methods in algebraic geometry. Reprint of the 1978 edition, Classics in Mathematics, 1995, Berlin: Springer-Verlag

[9]

Lü, Z. and Wang, W., Equivariant cohomology Chern numbers determine equivariant unitary bordism, submitted.

[10]

Milnor J.. On the cobordism ring Ω* and a complex analogue. I. Amer. J. Math., 1960, 82: 505-521

[11]

Segal G. B.. Equivariant K-theory. Publ. Math. IHES, 1968, 34: 129-151

[12]

tom Dieck T.. Characteristic numbers of G-manifold. II, J. Pure Appl. Algebra, 1974, 4: 31-39

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/