Buchstaber invariants of universal complexes

Yi Sun

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (6) : 1335 -1344.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (6) : 1335 -1344. DOI: 10.1007/s11401-017-1041-5
Article

Buchstaber invariants of universal complexes

Author information +
History +
PDF

Abstract

Davis and Januszkiewicz introduced (real and complex) universal complexes to give an equivalent definition of characteristic maps of simple polytopes, which now can be seen as “colorings”. The author derives an equivalent definition of Buchstaber invariants of a simplicial complex K, then interprets the difference of the real and complex Buchstaber invariants of K as the obstruction to liftings of nondegenerate simplicial maps from K to the real universal complex or the complex universal complex. It was proved by Ayzenberg that real universal complexes can not be nondegenerately mapped into complex universal complexes when dimension is 3. This paper presents that there is a nondegenerate map from 3-dimensional real universal complex to 4-dimensional complex universal complex.

Keywords

Buchstaber invariant / Universal complex / Lifting problem

Cite this article

Download citation ▾
Yi Sun. Buchstaber invariants of universal complexes. Chinese Annals of Mathematics, Series B, 2017, 38(6): 1335-1344 DOI:10.1007/s11401-017-1041-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ayzenberg A.. The problem of Buchstaber number and its combinatorial aspects, 2010

[2]

Ayzenberg A.. Buchstaber numbers and classical invariants of simplicial complexes, 2014

[3]

Buchstaber, V. M. and Panov, T. E., Torus actions and their applications in topology and combinatorics, University Lecture Series, 24, American Mathematical Society, Providence, RI, 2002.

[4]

Davis M., Januszkiewicz T.. Convex polytopes. Coxeter orbifolds and torus actions, Duke Math. J., 1991, 61: 417-451

[5]

Erokhovets N.. Buchstaber invariant of simple polytopes. Russian Math. Surveys, 2008, 63(5): 962-964

[6]

Erokhovets N.. Criterion for the Buchstaber invariant of simplicial complexes to be equal to two, 2012

[7]

Fukukawa Y., Masuda M.. Buchstaber invariants of skeleta of a simplex. Osaka J. Math., 2011, 48(2): 549-582

[8]

Hadamard J.. Résolution d’une question relative aux déterminants. Bull. des Sciences Math., 1893, 17: 240-246

[9]

Izmest’ev I. V.. Free torus action on the manifold Z p and the group of projectivities of a polytope P. Russian Math. Surveys, 2001, 56(3): 582-583

[10]

Z.. Equivariant bordism of 2-torus manifolds and unitary toric manifolds—a survey, 2014

[11]

Shephard G. C.. A theorem on cyclic polytopes. Israel J. Math., 1968, 6(4): 368-372

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/