On ℤ3-actions on spin 4-manifolds

Ximin Liu , Changtao Xue

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (6) : 1303 -1310.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (6) : 1303 -1310. DOI: 10.1007/s11401-017-1038-0
Article

On ℤ3-actions on spin 4-manifolds

Author information +
History +
PDF

Abstract

Let X be a closed, simply-connected, smooth, spin 4-manifold whose intersection form is isomorphic to 2k(−E s) ⊕ lH, where H is the hyperbolic form. In this paper, the authors prove that if there exists a locally linear pseudofree ℤ3-action on X, then Sign(g,X) ≡ −k mod 3. They also investigate the smoothability of locally linear ℤ3-action satisfying above congruence. In particular, it is proved that there exist some nonsmoothable locally linear ℤ3-actions on certain elliptic surfaces.

Keywords

Group action / Locally linear / Kirby-Siebenmann invariant / Nonsmoothable

Cite this article

Download citation ▾
Ximin Liu, Changtao Xue. On ℤ3-actions on spin 4-manifolds. Chinese Annals of Mathematics, Series B, 2017, 38(6): 1303-1310 DOI:10.1007/s11401-017-1038-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Atiyah M. F., Bott R.. A Lefschetz fixed point formula for elliptic complexes II Applications. Ann. Math., 1968, 88: 451-491

[2]

Atiyah M. F., Singer I.. The index of elliptic operators. III, Ann. of Math., 1968, 87: 546-604

[3]

Bryan J.. Seiberg-Witten theory and Z/2p actions on spin 4-manifolds. Math. Res. Letter, 1998, 5: 165-183

[4]

Chen W., Kwasik S.. Symmetries and exotic smooth structures on a K3 surface. J. Topol., 2008, 1(4): 923-962

[5]

Edmonds A. L., Ewing J. H.. Realizing forms and fixed point data in dimension four. Amer. J. Math., 1992, 114: 1103-1126

[6]

Fang F.. Smooth group actions on 4-manifolds and Seiberg-Witten invarinats. Internat. J. Math., 1998, 9(8): 957-973

[7]

Freedman M., Quinn F.. Topology of 4-manifolds, Princeton Mathematical Series 3, 1990, Princeton: Princeton Uni-versity Press

[8]

Furuta M.. Monopole equation and 11-8 -conjecture. Math. Res. Letter, 2001, 8: 279-291

[9]

Kiyono K.. Nonsmoothable group actions on spin 4-manifolds. Algebr. Geom. Topol., 2011, 11: 1345-1359

[10]

Kwasik S., Lawson T.. Nonsmoothable Zp-actions on contractible 4-manifolds. J. Reine Angew. Math., 1993, 437: 29-54

[11]

Kwasik S., Vogel P.. Asymmetric four-dimensional manifolds. Duke math. J., 1986, 53(3): 759-764

[12]

Liu X., Nakamura N.. Pseudofree Z/3-action on K3 surfaces. Proc. Amer. Math. Soc., 2007, 135(3): 903-910

[13]

Liu X., Nakamura N.. Nonsmoothable group actions on elliptic surfaces. Topol. Appl., 2008, 155: 946-964

[14]

Nakamura N.. Bauer-Furuta invariants under Z2-actions. Math. Z., 2009, 262: 219-233

[15]

Saveliev, N., Invariants for homology 3-spheres, Encyclopaedia of Mathematical Schiences, 140, Springer-Verlag, Berlin, 2002.

[16]

Xue C., Liu X.. Nonsmoothable involutions on spin 4-manifolds. Proc. Ind. Acad. Sci. Soc. (Math. Sci.), 2011, 121(1): 37-44

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/