Topology of moment-angle manifolds arising from flag nestohedra

Ivan Limonchenko

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (6) : 1287 -1302.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (6) : 1287 -1302. DOI: 10.1007/s11401-017-1037-1
Article

Topology of moment-angle manifolds arising from flag nestohedra

Author information +
History +
PDF

Abstract

The author constructs a family of manifolds, one for each n ≥ 2, having a nontrivial Massey n-product in their cohomology for any given n. These manifolds turn out to be smooth closed 2-connected manifolds with a compact torus Tm-action called moment-angle manifolds Z P, whose orbit spaces are simple n-dimensional polytopes P obtained from an n-cube by a sequence of truncations of faces of codimension 2 only (2-truncated cubes). Moreover, the polytopes P are flag nestohedra but not graph-associahedra. The author also describes the numbers β −i,2(i+1)(Q) for an associahedron Q in terms of its graph structure and relates it to the structure of the loop homology (Pontryagin algebra) H *(ΩZ Q), and then studies higher Massey products in H *(Z Q) for a graph-associahedron Q.

Keywords

Moment-angle manifold / Flag nestohedra / Stanley-Reisner ring / Massey products / Graph-associahedron

Cite this article

Download citation ▾
Ivan Limonchenko. Topology of moment-angle manifolds arising from flag nestohedra. Chinese Annals of Mathematics, Series B, 2017, 38(6): 1287-1302 DOI:10.1007/s11401-017-1037-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bahri A., Bendersky M., Cohen F. R., Gitler S.. The polyhedral product functor: A method of computation for moment-angle complexes. arrangements and related spaces, Adv. Math., 2010, 225(3): 1634-1668

[2]

Baskakov I. V.. Massey triple products in the cohomology of moment-angle complexes. Russian Math. Surveys, 2003, 58(5): 1039-1041

[3]

Bosio F., Meersseman L.. Real quadrics in Cn. complex manifolds and convex polytopes, Acta Math., 2006, 197(1): 53-127

[4]

Bott R., Taubes C.. On the self-linking of knots. topology and physics, J. Math. Phys., 1994, 35(10): 5247-5287

[5]

Buchstaber V. M., Panov T. E.. Torus actions, combinatorial topology and homological algebra. Uspekhi Mat. Nauk, 2000, 55(5): 3-106

[6]

Buchstaber, V. M. and Panov, T. E., Toric Topology, Mathematical Surveys and Monographs, 204, Amer-ican Mathematical Society, Providence, RI, 2015.

[7]

Buchstaber V. M., Volodin V.. Precise upper and lower bounds for nestohedra. Izv. Ross. Akad. Nauk, Ser. Mat., 2011, 75(6): 17-46

[8]

Carr M. P., Devadoss S. L.. Coxeter complexes and graph-associahedra. Topology Appl., 2006, 153(12): 2155-2168

[9]

Denham G., Suciu A. I.. Moment-angle complexes. monomial ideals, and Massey products, Pure and Applied Mathematics Quarterly, 2007, 3(1): 25-60

[10]

Feichtner E. M., Sturmfels B.. Matroid polytopes. nested sets and Bergman fans, Port. Math. (N.S.), 2005, 62(4): 437-468

[11]

Fenn A.. On families of nestohedra, 2010

[12]

Grbić J., Panov T., Theriault S., Wu J.. The homotopy types of moment-angle complexes for flag complexes. Transactions of the AMS, 2016, 368: 6663-6682

[13]

Grbić J., Theriault S.. The homotopy type of the complement of a coordinate subspace arrangement. Topology, 2007, 46(4): 357-396

[14]

Grbić J., Theriault S.. Homotopy theory in toric topology. Russian Mathematical Surveys, 2016, 71(2): 185-251

[15]

Hochster M.. Cohen-Macaulay rings, combinatorics, and simplicial complexes, in Ring theory, II, Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975. Lecture Notes in Pure and Appl. Math., 1977, 26: 171-223

[16]

Iriye K., Kishimoto D.. Decompositions of polyhedral products for shifted complexes. Adv. Math., 2013, 245: 716-736

[17]

Kraines D.. Massey higher products. Transactions of the AMS, 1966, 124: 431-449

[18]

Limonchenko I. Y.. Bigraded Betti numbers of certain simple polytopes. Mathematical Notes, 2013, 94(3): 351-363

[19]

Limonchenko I. Y.. Massey products in cohomology of moment-angle manifolds for 2-truncated cubes. Russian Math. Surveys, 2016, 71(2): 376-378

[20]

McGavran D.. Adjacent connected sums and torus actions. Transactions of the AMS, 1979, 251: 235-254

[21]

Panov T. E.. Cohomology of face rings, and torus actions, Surveys in Contemporary Mathematics. London Math. Soc. Lecture Note Series, 2008, 347: 165-201

[22]

Postnikov, A., Permutohedra, associahedra, and beyond, arXiv: math.CO/0507163.

[23]

Postnikov, A., Reiner, V. and Williams, L., Faces of generalized permutohedra, arXiv: math/0609184 v2 [math.CO].

[24]

Stasheff J. D.. Homotopy associativity of H-spaces. I.. Transactions of the AMS, 1963, 108: 275-292

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/