Virtual braids, virtual Temperley-Lieb algebra and f-polynomial
Zhiguo Li , Fengchun Lei , Jingyan Li
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (6) : 1275 -1286.
Virtual braids, virtual Temperley-Lieb algebra and f-polynomial
The authors study the properties of virtual Temperley-Lieb algebra and show how the f-polynomial of virtual knot can be derived from a representation of the virtual braid group into the virtual Temperley-Lieb algebra, which is an approach similar to Jones’s original construction.
Virtual braids / Virtual Temperley-Lieb algebra / f-polynomial
| [1] |
Dye, H. A. and Kauffman, L. H., Virtual Knot Diagrams and the Witten-Reshetikhin-Turaev Invariant, arXiv: math.GT/0407407. |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
Kauffman, L. H. and Lin, S. L., Temperley-Lieb Recoupling Theory and Invariants of Three-Manifold, Ann. of Math. Stud., 114, Princeton Univ. Press, Princeton, 1994. |
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
Zhang, Y., Kauffman, L. H. and Molin, Ge, Virtual extension of Temperley-Lieb algebra, arXiv: math-ph/0610052. |
| [21] |
Zhang, Y., Kauffman, L. H. and Werner, R. F., Permutation and its partial transpose, accepted by International Journal of Quantum Information for publication, arXiv: quant-ph/0606005. |
/
| 〈 |
|
〉 |