Virtual braids, virtual Temperley-Lieb algebra and f-polynomial

Zhiguo Li , Fengchun Lei , Jingyan Li

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (6) : 1275 -1286.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (6) : 1275 -1286. DOI: 10.1007/s11401-017-1036-2
Article

Virtual braids, virtual Temperley-Lieb algebra and f-polynomial

Author information +
History +
PDF

Abstract

The authors study the properties of virtual Temperley-Lieb algebra and show how the f-polynomial of virtual knot can be derived from a representation of the virtual braid group into the virtual Temperley-Lieb algebra, which is an approach similar to Jones’s original construction.

Keywords

Virtual braids / Virtual Temperley-Lieb algebra / f-polynomial

Cite this article

Download citation ▾
Zhiguo Li, Fengchun Lei, Jingyan Li. Virtual braids, virtual Temperley-Lieb algebra and f-polynomial. Chinese Annals of Mathematics, Series B, 2017, 38(6): 1275-1286 DOI:10.1007/s11401-017-1036-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dye, H. A. and Kauffman, L. H., Virtual Knot Diagrams and the Witten-Reshetikhin-Turaev Invariant, arXiv: math.GT/0407407.

[2]

Goussarov M., Polyak M., Viro O.. Finite type invariants of classical and virtual knots. Topology, 2000, 39(5): 1045-1068

[3]

Jones V. F. R.. A polynomial invariant for knots via von neuman algebras. Bull. Amer. Math. Soc., 1985, 12: 103-111

[4]

Jones V. F. R.. Braid groups, Heck algebra and type II factors, Geometric Methods in Abstract Algebras. Proc. U.S.-Japan Symposium, 1986 242-273

[5]

Jones V. F. R.. Heck algebra representations of braid groups and link polynomials. Ann. of Math., 1987, 126: 335-388

[6]

Kamada S.. Braid presentation of virtual knots and welded knots. Osaka J. Math., 2007, 44(2): 441-458

[7]

Kauffman L. H.. State models and the Jones polynomial. Topology, 1987, 26: 395-407

[8]

Kauffman L. H.. An invariant of regular isotopy. Transactions of the American Mathematical Society, 1990, 318(2): 417-471

[9]

Kauffman L. H.. Knots and Physics, 1991, Singapore: World Scientific

[10]

Kauffman L. H.. Virtual knots, Talks at MSRI Meeting, January 1997 and AMS Meeting at University of Maryland, 1997

[11]

Kauffman L. H.. Virtual knot theory. European J. Combin, 1999, 20: 663-690

[12]

Kauffman L. H.. W M., M T.. Knot diagrammatics. Handbook of Knot Theory, 2005 233-318

[13]

Kauffmann L. H., Lambropoulou S.. Virtual braids. Fund. Math., 2004, 184: 159-186

[14]

Kauffmann L. H., Lambropoulou S.. Virtual braid and L-move. J. Knot Theory Ramifications, 2006, 15(6): 773-811

[15]

Kauffman, L. H. and Lin, S. L., Temperley-Lieb Recoupling Theory and Invariants of Three-Manifold, Ann. of Math. Stud., 114, Princeton Univ. Press, Princeton, 1994.

[16]

Krebes D. A.. Persistent invariants of tangles. J. Knot Theory Ramifications, 2000, 19(4): 471-477

[17]

Manturov V. O.. Virtual knots: The State of Art, 2012

[18]

Temperley H. N. V., Lieb E. H.. Relations between the percolation and colouring problem and other graph-theoretical problems associated with regular planar lattices: Some exact results for the percolation problem. Proc. Roy. Soc., A, 1971, 322: 251-280

[19]

Vershinin V.. On homology of virtual braids and Burau representation. J. Knot Theory Ramifications, 2001, 18(5): 795-812

[20]

Zhang, Y., Kauffman, L. H. and Molin, Ge, Virtual extension of Temperley-Lieb algebra, arXiv: math-ph/0610052.

[21]

Zhang, Y., Kauffman, L. H. and Werner, R. F., Permutation and its partial transpose, accepted by International Journal of Quantum Information for publication, arXiv: quant-ph/0606005.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/