The Betti numbers of real toric varieties associated to Weyl chambers of type B

Suyoung Choi , Boram Park , Hanchul Park

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (6) : 1213 -1222.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (6) : 1213 -1222. DOI: 10.1007/s11401-017-1032-6
Article

The Betti numbers of real toric varieties associated to Weyl chambers of type B

Author information +
History +
PDF

Abstract

The authors compute the (rational) Betti number of real toric varieties associated to Weyl chambers of type B, and furthermore show that their integral cohomology is p-torsion free for all odd primes p.

Keywords

Real toric variety / Real toric manifold / Betti number / Torsion-free cohomology / Root system / Weyl chambers / Type B / Generalized Euler number / Springer number / Shellability

Cite this article

Download citation ▾
Suyoung Choi, Boram Park, Hanchul Park. The Betti numbers of real toric varieties associated to Weyl chambers of type B. Chinese Annals of Mathematics, Series B, 2017, 38(6): 1213-1222 DOI:10.1007/s11401-017-1032-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abe H.. Young diagrams and intersection numbers for toric manifolds associated with Weyl chambers. Electron. J. Combin., 2015, 22(2): 24

[2]

Arnol’d V. I.. Snake calculus and the combinatorics of the Bernoulli. Euler and Springer numbers of Coxeter groups, Uspekhi Mat. Nauk, 1992, 47(1): 3-45

[3]

Björner A., Wachs M. L.. Shellable nonpure complexes and posets. I. Trans. Amer. Math. Soc., 1996, 348(4): 1299-1327

[4]

Choi S., Kaji S., Theriault S.. Homotopy decomposition of a suspended real toric manifold. Bol. Soc. Mat. Mex., 3, 2017, 23(1): 153-161

[5]

Choi S., Park H.. On the cohomology and their torsion of real toric objects. Forum Math., 2017, 29(3): 543-553

[6]

Choi S., Park H.. A new graph invariant arises in toric topology. J. Math. Soc. Japan, 2015, 67(2): 699-720

[7]

Danilov V. I.. The geometry of toric varieties. Uspekhi Mat. Nauk, 1978, 33(2): 85-134

[8]

Davis M. W., Januszkiewicz T.. Convex polytopes. Coxeter orbifolds and torus actions, Duke Math. J., 1991, 62(2): 417-451

[9]

Dolgachev I., Lunts V.. A character formula for the representation of a Weyl group in the cohomology of the associated toric variety. J. Algebra, 1994, 168(3): 741-772

[10]

Henderson A.. Rational cohomology of the real Coxeter toric variety of type A. Configuration spaces, CRM Series, 2012, 14: 313-326

[11]

Jurkiewicz J.. Chow ring of projective nonsingular torus embedding. Colloq. Math., 1980, 43(2): 261-270

[12]

Procesi C.. The toric variety associated to Weyl chambers. Mots, Lang. Raison. Calc., 1990, Paris: Hermès 153-161

[13]

Sloane, N. J. A., The on-line encyclopedia of integer sequences, http://oeis.org.

[14]

Stanley, R. P., Enumerative combinatorics, Vol. 1, Cambridge Studies in Advanced Mathematics, Vol. 49, Cambridge University Press, Cambridge, 1997, With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original.

[15]

Stembridge J. R.. Some permutation representations of Weyl groups associated with the cohomology of toric varieties. Adv. Math., 1994, 106(2): 244-301

[16]

Suciu A. I.. The rational homology of real toric manifolds. Oberwolfach Reports, 2012, 4: 2972-2976

[17]

Suciu A. I., Trevisan A.. Real toric varieties and abelian covers of generalized davis-januszkiewicz spaces, 2012

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/