Quasi normal sectors and orbits in regular critical directions of planar system

Shimin Li , Yulin Zhao

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (5) : 1179 -1196.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (5) : 1179 -1196. DOI: 10.1007/s11401-017-1030-8
Article

Quasi normal sectors and orbits in regular critical directions of planar system

Author information +
History +
PDF

Abstract

This paper deals with the qualitative behavior of orbits at degenerate singular point with the method of quasi normal sector, which is a generalization of Frommer’s normal sectors. Several examples show that this method is more effective than the well-known methods of Z-sectors, normal sectors and generalized normal sector.

Keywords

Normal sector / Generalized normal sector / Quasi normal sector

Cite this article

Download citation ▾
Shimin Li, Yulin Zhao. Quasi normal sectors and orbits in regular critical directions of planar system. Chinese Annals of Mathematics, Series B, 2017, 38(5): 1179-1196 DOI:10.1007/s11401-017-1030-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alvarez M. J., Ferragut A., Jarque X.. A survey on the blow-up technique. Internat. J. Bifur. Chaos, 2011, 21: 3103-3118

[2]

Andreev A.. Investigation of the behavior of the integral curves of a system of two differential equations in the neighborhood of a singular point. Trans. Amer. Math. Soc., 1958, 8: 187-207

[3]

Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G.. Qualitative Theory of 2nd Ordinary Dynamic Systems, 1973, New York: J. Wiley Sons

[4]

Broer H. W., Dumortier F., Strien S. J., Takens F.. Structures in Dynamics, Studies Math. Phys., 1981, B. V.: North-Holland, Elsevier Science Publishers

[5]

Coll B., Gasull G., Prohens R.. Differential equations defined by the sum of two quasi-homogeneous vector feilds. Can. J. Math., 1997, 49: 212-231

[6]

Dumortier F.. Singularities of vector fields on the plane. J. Differential Equations, 1977, 23: 53-106

[7]

Frommer M.. Die intergralkurven einer gewohnlichen differentialgleichung erster ordnung in der umgebung rationaler unbestimmtheitsstellen. Math. Appl., 1928, 99: 222-272

[8]

Lefschetz S.. Differential Equations: Geometric Theory, 1957, New York: Interscience

[9]

Lyapunov A. M.. Stability of Motion, Mathematics in Science and Engineering, 1966, New York, London: Academic Press

[10]

Nemytskii V. V., Stepanov V. V.. Qualitative theory of differential equation, Princeton Math. Series, 1960, Princeton, N. J.: Princeton University Press

[11]

Oliveira, R. D. S. and Zhao, Y., On the structural stability of planar quasi-homogeneous polynomial vector fields, Qual. Theory Dyn. Syst., 13, 2013, DOI: 10.1007/s12346-013-0105-5.

[12]

Tang Y., Li W., Zhang Z.. Focus-center problem of planar degenerate system. J. Math. Anal. Appl., 2008, 345: 934-940

[13]

Tang Y., Zhang W.. Generalized normal sectors and orbits in exceptional directions. Nonlinearity, 2004, 17: 1407-1426

[14]

Zhang Z., Ding T., Huang W., Dong Z.. Qualitative Theory of Differential Equation, 1992

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/