Dimension of slices through fractals with initial cubic pattern

Lifeng Xi , Wen Wu , Ying Xiong

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (5) : 1145 -1178.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (5) : 1145 -1178. DOI: 10.1007/s11401-017-1029-1
Article

Dimension of slices through fractals with initial cubic pattern

Author information +
History +
PDF

Abstract

In this paper, the Hausdorff dimension of the intersection of self-similar fractals in Euclidean space R n generated from an initial cube pattern with an (n−m)-dimensional hyperplane V in a fixed direction is discussed. The authors give a sufficient condition which ensures that the Hausdorff dimensions of the slices of the fractal sets generated by “multi-rules” take the value in Marstrand’s theorem, i.e., the dimension of the self-similar sets minus one. For the self-similar fractals generated with initial cube pattern, this sufficient condition also ensures that the projection measure μV is absolutely continuous with respect to the Lebesgue measure L m. When μVL m, the connection of the local dimension of μV and the box dimension of slices is given.

Keywords

Slice / Self-similar set / Dimension / Fractal

Cite this article

Download citation ▾
Lifeng Xi, Wen Wu, Ying Xiong. Dimension of slices through fractals with initial cubic pattern. Chinese Annals of Mathematics, Series B, 2017, 38(5): 1145-1178 DOI:10.1007/s11401-017-1029-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Báraány B., Furguson A., Simon K.. Slicing the Sierpinski gasket. Nonlinearity, 2012, 25: 1753-1770

[2]

David G., Semmes S.. Fractured fractals and broken dreams: Self-similar geometry through metric and measure, Oxford Lecture Series in Mathematics and Its Applications, 1997, New York: The Clarendon Press Oxford University Press

[3]

Feng D. J., Hu H.. Dimension theory of iterated function systems. Comm. Pure Appl. Math., 2009, 62: 1435-1500

[4]

Feng, D. J., Private communication.

[5]

Furstenberg H.. Ergodic fractal measures and dimension conservation. Ergodic Theory Dyn. Syst., 2008, 28: 405-422

[6]

Hawkes J.. Some algebraic properties of small sets. Quart. J. Math. Oxford Ser., 1975, 26: 195-201

[7]

Hutchinson J. E.. Fractals and self similarity. Indiana Univ. Math. J., 1981, 30: 713-747

[8]

Kenyon R., Peres Y.. Intersecting random translates of invariant Cantor sets. Invent. Math., 1991, 104: 601-629

[9]

Lau K. S., Ngai S. M., Rao H.. Iterated function systems with overlaps and self-similar measures. J. London Math. Soc., 2001, 63: 99-116

[10]

Liu Q. H., Xi L. F., Zhao Y. F.. Dimensions of intersections of the Sierpinski carpet with lines of rational slopes. Proc. Edinb. Math. Soc., 2007, 50: 411-428

[11]

Manning A., Simon K.. Dimension of slices through the Sierpinski carpet. Trans. Amer. Math. Soc., 2013, 365: 213-250

[12]

Marstrand J. M.. Some fundamental geometrical properties of plane sets of fractional dimension. Proc. Lond. Math. Soc., 1954, 4: 257-302

[13]

Mattila P.. Geometry of Sets and Measures in Euclidean Spaces, 1995

[14]

Niu M., Xi L. F.. Singularity of a class of self-similar measures. Chaos, Solitons and Fractals, 2007, 34: 376-382

[15]

Protasov V.. Refinement equations with non-negative coefficients. J. Fourier Anal. Appl., 2000, 6(1): 55-77

[16]

Peres Y., Schlag W., Solomyak B.. Sixty years of Bernoulli convolutions in fractal geometry and stochastics. Progr. Probab., 2000 39-65

[17]

Walters P.. An Introduction to Ergodic Theory, 1982

[18]

Wen Z. X., Wu W., Xi L. F.. Dimension of slices through a self-similar set with initial cubic pattern. Ann. Acad. Sci. Fenn. Math., 2013, 38: 473-487

[19]

Wen Z. Y., Xi L. F.. On the dimensions of sections for the graph-directed sets. Ann. Acad. Sci. Fenn. Math., 2010, 35: 515-535

[20]

Wen Z. Y.. Moran sets and Moran classes. Chin. Sci. Bull., 2001, 46(22): 1849-1856

[21]

Wu W., Xi L. F.. Dimensions of slices through a class of generalized Sierpinski sponges. J. Math. Anal. Appl., 2013, 399: 514-523

[22]

Young L. S.. Dimension entropy and Lyapunov exponents. Ergodic Theory Dyn. Syst., 1982, 2: 109-124

AI Summary AI Mindmap
PDF

361

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/