Möbius homogeneous hypersurfaces with three distinct principal curvatures in S n+1

Tongzhu Li

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (5) : 1131 -1144.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (5) : 1131 -1144. DOI: 10.1007/s11401-017-1028-2
Article

Möbius homogeneous hypersurfaces with three distinct principal curvatures in S n+1

Author information +
History +
PDF

Abstract

Let x: M n → S n+1 be an immersed hypersurface in the (n + 1)-dimensional sphere S n+1. If, for any points p, qM n, there exists a Möbius transformation ϕ: S n+1 → S n+1 such that ϕx(M n) = x(M n) and ϕx(p) = x(q), then the hypersurface is called a Möbius homogeneous hypersurface. In this paper, the Möbius homogeneous hypersurfaces with three distinct principal curvatures are classified completely up to a Möbius transformation.

Keywords

Möbius transformation group / Conformal transformation group / Möbius homogeneous hypersurfaces / Möbius isoparametric hypersurfaces

Cite this article

Download citation ▾
Tongzhu Li. Möbius homogeneous hypersurfaces with three distinct principal curvatures in S n+1. Chinese Annals of Mathematics, Series B, 2017, 38(5): 1131-1144 DOI:10.1007/s11401-017-1028-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akivis M. A., Goldberg V. V.. A conformal differential invariants and the conformal rigidity of hypersurfaces. Proc. Amer. Math. Soc., 1997, 125: 2415-2424

[2]

Cartan E.. Sur des familes remarquables d’hypersurfaces isoparamétriques dans les espace sphériques. Math. Z., 1939, 45: 335-367

[3]

Cecil T. E.. Lie Sphere Geometry: With Applications to Submanifolds, 1992, New York: Springer-Verlag

[4]

Guo Z., Li H., Wang C. P.. The Möbius characterizations of Willmore tori and Veronese submanifolds in unit sphere. Pacific J. Math., 2009, 241: 227-242

[5]

Hu Z. J., Zhai S. J.. Möbius isoparametric hypersurfaces with three distinct principal curvatures,II. Pacific J. Math., 2011, 249: 343-370

[6]

Li T. Z., Ma X., Wang C. P.. Möbius homogeneous hypersurfaces with two distinct principal curvatures in S n+1. Ark. Mat., 2013, 51: 315-328

[7]

Li X. X., Zhang F. Y.. On the Blaschke isoparametric hypersurfaces in the unit sphere. Acta Math. Sin. (Engl. Ser.), 2009, 25: 657-678

[8]

Liu H., Wang C. P., Zhao G. S.. Möbius isotropic submanifolds in Sn. Tohoku Math. J., 2001, 53: 553-569

[9]

O’Neil B.. Semi-Riemannian Geometry, 1983, New York: Academic Press

[10]

Sulanke R.. Möbius geometry V: Homogeneous surfaces in the Möbius space S 3, 1984 1141-1154

[11]

Wang C. P.. Möbius geometry of submanifolds in Sn. Manuscripta Math., 1998, 96: 517-534

[12]

Wang C. P.. Möbius geometry for hypersurfaces in S4. Nagoya Math. J., 1995, 139: 1-20

AI Summary AI Mindmap
PDF

202

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/