On λ-power distributional n-chaos

Heman Fu , Feng Tan

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (5) : 1119 -1130.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (5) : 1119 -1130. DOI: 10.1007/s11401-017-1027-3
Article

On λ-power distributional n-chaos

Author information +
History +
PDF

Abstract

For each real number λ ∈ 2 [0, 1], λ-power distributional chaos has been introduced and studied via Furstenberg families recently. The chaoticity gets stronger and stronger as λ varies from 1 to 0, where 1-power distributional chaos is exactly the usual distributional chaos. As a generalization of distributional n-chaos, λ-power distributional n-chaos is defined similarly. Lots of classic results on distributional chaos can be improved to be the versions of λ-power distributional n-chaos accordingly. A practical method for distinguishing 0-power distributional n-chaos is given. A transitive system is constructed to be 0-power distributionally n-chaotic but without any distributionally (n + 1)-scrambled tuples. For each λ ∈ 2 [0, 1], λ-power distributional n-chaos can still appear in minimal systems with zero topological entropy.

Keywords

Furstenberg family / λ-power distributional n-chaos / Minimal system / Topological entropy

Cite this article

Download citation ▾
Heman Fu, Feng Tan. On λ-power distributional n-chaos. Chinese Annals of Mathematics, Series B, 2017, 38(5): 1119-1130 DOI:10.1007/s11401-017-1027-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akin E.. Recurrence in Topological Dynamical Systems: Furstenberg Families and Ellis Actions, 1997, New York: Plenum

[2]

Fu H. M., Xiong J. C., Wang H. Y.. The hierarchy of distributional chaos. International Journal of Bifurcation and Chaos, 2015, 25(1): 1550001

[3]

Fu H. M., Xiong J. C., Tan F.. On distributionally chaotic and null systems. J. Math. Anal. Appl., 2011, 375: 166-173

[4]

Liao G. F., Fan Q. J.. Minimal subshifts which display Schweizer-Smítal chaos and have zore topological entropy. Science in China (Series A), 1998, 41: 33-38

[5]

Li J., Oprocha P.. On n-scrambled tuples and distributional chaos in a sequence. J. Differ. Equ. Appl., 2013, 19(6): 927-941

[6]

Li T. Y., Yorke J. A.. Period 3 implies chaos. Amer. Math. Monthly, 1975, 82: 985-992

[7]

Oprocha P.. Distributional chaos revisited. Tran. Amer. Math. Soc., 2009, 361(10): 4901-4925

[8]

Shao S.. Proximity and distality via Furstenberg families. Topo. and Its Appl., 2006, 153: 2055-2072

[9]

Schweieer B., Smítal J.. Measure of chaos and a spectral decomposition of dynamical system on the interval. Trans. Amer. Soc., 1994, 334: 737-754

[10]

Tan F., Fu H. M.. On distributional n-chaos. Acta Mathematica Scientia, 2014, 34(5): 1473-1480

[11]

Walter P.. An Introduction to Ergodic Theory, 1982, New York: Spring-Verlag

[12]

Xiong J. C.. Chaos in topological transitive systems. Science in China Series A: Mathematics, 2005, 48: 929-939

[13]

Xiong J. C., Fu H. M., Wang H. Y.. A class of Furstenberg families and their applications to chaotic dynamics. Sci. China Math., 2014, 57: 823-836

[14]

Xiong J. C., J., Tan F.. Furstenberg family and chaos. Science in China Series A: Mathematics, 2007, 50(9): 1325-1333

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/