Equivalent properties for CD inequalities on graphs with unbounded Laplacians

Chao Gong , Yong Lin

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (5) : 1059 -1070.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (5) : 1059 -1070. DOI: 10.1007/s11401-017-1022-8
Article

Equivalent properties for CD inequalities on graphs with unbounded Laplacians

Author information +
History +
PDF

Abstract

The CD inequalities are introduced to imply the gradient estimate of Laplace operator on graphs. This article is based on the unbounded Laplacians, and finally concludes some equivalent properties of the CD(K,1) and CD(K,n).

Keywords

Graph theory / CD inequality / Unbounded Laplacian

Cite this article

Download citation ▾
Chao Gong, Yong Lin. Equivalent properties for CD inequalities on graphs with unbounded Laplacians. Chinese Annals of Mathematics, Series B, 2017, 38(5): 1059-1070 DOI:10.1007/s11401-017-1022-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chung F.. Spectral Graph Theory, CBMS Regional Congerence Series in Mahtematics, 1997, Providence, RI: American Mathemeatical Society

[2]

Hua B. B., Lin Y.. Stochastic completeness for graphs with curvature dimension conditions. Adv. Math., 2017, 306: 279-302

[3]

Bakery D., Gentil I., Ledoux M.. Analysis and geometry of Markov diffusion operators, Number 348 in Grundlehren der Mathematischen Wissenschaften, 2014, Cham: Springer

[4]

Bauer F., Horn P., Lin Y., Lippner G., Mangoubi D., Yau S.-T.. Li-Yau inequality on graphs. Journal of Differential Geometry, 2015, 99: 359-405

[5]

Keller M., Lenz D.. Unbounded Laplacians on graphs:basic spectral properties and the heat equation. Mathematical Modelling of Natural Phenomena, 2011, 5(4): 198-224

[6]

Keller M., Lenz D.. Dirichlet forms and stochastic completeness of graphs and subgraphs. Journal Fur Die Reine Und Angewandte Mathematik, 2012, 2012(666): 1074-1076

[7]

Horn, P., Lin, Y., Liu, S. and Yau, S.-T., Volume doubling, Poincaré inequality and Guassian heat kernel estimate for nonnegative curvature graphs, preprint.

[8]

Lin Y., Yau S.-T.. Ricci curvature and eigenvalue estimate on locally finite graphs. Math. Res. Lett., 2010, 17(2): 343-356

[9]

Lin, Y. and Liu, S., Equivalent properties of CD inequality on graphs, preprint.

[10]

Yau S.-T., Schoen R.. Lectures on Differential Geometry, 2014, Beijing: Higher Education Press

[11]

Gudmundsson S.. An Introduction to Riemann Geometry, 2004, Beijing: Beijing University

AI Summary AI Mindmap
PDF

208

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/