Mathematical justification of an obstacle problem in the case of a plate

Yan Guan

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (5) : 1047 -1058.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (5) : 1047 -1058. DOI: 10.1007/s11401-017-1021-9
Article

Mathematical justification of an obstacle problem in the case of a plate

Author information +
History +
PDF

Abstract

In this paper the modeling of a thin plate in unilateral contact with a rigid plane is properly justified. Starting from the three-dimensional nonlinear Signorini problem, by an asymptotic approach the convergence of the displacement field as the thickness of the plate goes to zero is studied. It is shown that the transverse mechanical displacement field decouples from the in-plane components and solves an obstacle problem.

Keywords

Signorini problem / Obstacle problem / Asymptotic analysis / Plate

Cite this article

Download citation ▾
Yan Guan. Mathematical justification of an obstacle problem in the case of a plate. Chinese Annals of Mathematics, Series B, 2017, 38(5): 1047-1058 DOI:10.1007/s11401-017-1021-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Léger A., Miara B.. Mathematical justification of the obstacle problem in the case of a shallow shell. J. Elasticity, 2008, 90: 241-257

[2]

Léger A., Miara B.. The obstacle problem for shallow shells: A curvilinear approach. Intl. J. of Numerical Analysis and Modeling, Ser. B, 2011, 2: 1-26

[3]

Ciarlet P. G., Destuynder P.. A justification of the two dimensional plate model. J. Mécanique, 1979, 18: 315-344

[4]

Ciarlet P. G.. Mathematical Elasticity, 1997

[5]

Fichera, G., Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Mem. Accad. Naz. Lincei Ser., VIII 7, 1964, 91–140.

[6]

Duvaut G., Lions J.-L.. Les Inéquations en Mécanique et en Physique, 1972

[7]

Paumier J. C.. Modélisation asymptotique d’un problème de plaque mince en contact unilatéral avec frottement contre un obstacle rigide, 2002

[8]

Lions J.-L.. Quelques Méthodes de Résolution des Problêmes aux Limites Non Linéaires, 1969, Paris: Dunod-Gauthier-Villars

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/