Boundedness of solutions for Duffing equation with low regularity in time

Xiaoping Yuan

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (5) : 1037 -1046.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (5) : 1037 -1046. DOI: 10.1007/s11401-017-1020-x
Article

Boundedness of solutions for Duffing equation with low regularity in time

Author information +
History +
PDF

Abstract

It is shown that all solutions are bounded for Duffing equation $\ddot x + {x^{2n + 1}} + \sum\limits_{j = 0}^{2n} {{P_j}} \left( t \right){x^j} = 0$, provided that for each n + 1 ≤ j ≤ 2n, P j ∈ Cγ (T1) with γ > 1 − 1/n and for each j with 0 ≤ jn, P jL(T1) where T1 = R/Z.

Keywords

Duffing equation / Boundedness of solutions / Lagrange stability / Moser twist theorem / Quasi-periodic solution

Cite this article

Download citation ▾
Xiaoping Yuan. Boundedness of solutions for Duffing equation with low regularity in time. Chinese Annals of Mathematics, Series B, 2017, 38(5): 1037-1046 DOI:10.1007/s11401-017-1020-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dieckerhoff R., Zehnder E.. Boundedness of solutions via twist theorem. Ann. Scula. Norm. Sup. Pisa, 1987, 14: 79-95

[2]

Laederich S., Levi M.. Invariant curves and time-dependent potential. Ergod. Th. and Dynam. Sys., 1991, 11: 365-378

[3]

Liu B.. Boundedness for solutions of nonlinear periodic differential equations via Moser’s twist theorem. Acta Math Sinica (N.S.), 1992, 8: 91-98

[4]

Liu B.. Boundedness for solutions of nonlinear Hill’s equations with periodic forcing terms via Moser’s twist theorem. J. Diff. Eqs, 1989, 79: 304-315

[5]

Morris G. R.. A case of boundedness in Littlewood’s problem on oscillatory differential equations. Bull. Austral. Math. Soc., 1976, 14: 71-93

[6]

Moser J.. On invariant curves of area-preserving mappings of annulus. Nachr. Akad. Wiss. Gottingen Math.-Phys., 1962, 2: 1-20

[7]

Moser J.. Stable and Random Motion in Dynamical Systems, Ann. of Math. Studies, 1973, Princeton: Princeton University Press

[8]

Russman H.. Uber invariante Kurven differenzierbarer Abbildungen eines Kreisringes. Nachr. Akad. Wiss. Gottingen, Math. Phys., 1970, 2: 67-105

[9]

Salamon D., Zehnder E.. KAM theory in configuration space. Commun. Math. Helv., 1989, 64(1): 84-132

[10]

Salamon D.. The Kolmogorov-Arnold-Moser theorem. Mathematical Physics Electronic Journal, 2004, 10(3): 1-37

[11]

Wang Y.. Unboundedness in a Duffing equation with polynomial potentials. J. Diff. Eqs., 2000, 160(2): 467-479

[12]

Yuan X.. Invariant tori of Duffing-type equations. Advances in Math (China), 1995, 24: 375-376

[13]

Yuan X.. Invariant tori of Duffing-type equations. J. Diff. Eqs., 1998, 142(2): 231-262

[14]

Yuan X.. Lagrange stability for Duffing-type equations. J. Diff. Eqs., 2000, 160(1): 94-117

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/