Flat solutions of some non-Lipschitz autonomous semilinear equations may be stable for N ≥ 3

Jesús Ildefonso Díaz , Jesús Hernández , Yavdat Il’yasov

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (1) : 345 -378.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (1) : 345 -378. DOI: 10.1007/s11401-016-1073-2
Article

Flat solutions of some non-Lipschitz autonomous semilinear equations may be stable for N ≥ 3

Author information +
History +
PDF

Abstract

The authors prove that flat ground state solutions (i.e. minimizing the energy and with gradient vanishing on the boundary of the domain) of the Dirichlet problem associated to some semilinear autonomous elliptic equations with a strong absorption term given by a non-Lipschitz function are unstable for dimensions N = 1,2 and they can be stable for N ≥ 3 for suitable values of the involved exponents.

Keywords

Semilinear elliptic and parabolic equation / Strong absorption / Spectral problem / Nehari manifolds / Pohozaev identity / Flat solution / Linearized stability / Lyapunov function / Global instability

Cite this article

Download citation ▾
Jesús Ildefonso Díaz, Jesús Hernández, Yavdat Il’yasov. Flat solutions of some non-Lipschitz autonomous semilinear equations may be stable for N ≥ 3. Chinese Annals of Mathematics, Series B, 2017, 38(1): 345-378 DOI:10.1007/s11401-016-1073-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Álvarez L., Díaz J. I.. On the retention of the interfaces in some elliptic and parabolic nonlinear problems. Discrete and Continuum Dynamical Systems, 2009, 25(1): 1-17

[2]

Antontsev S., Díaz J. I., Shmarev S.. Energy methods for free boundary problems, Applications to Nonlinear PDEs and Fluid Mechanics, 2002

[3]

Akagi, G. and Kajikiya, R., Stability of stationary solutions for semilinear heat equations with concave nonlinearity, Communications in Contemporary Mathematics, to appear.

[4]

Benilan Ph., Brezis H., Crandall M. G.. A semilinear equation in L1(RN). Ann. Scuola Norm. Sup. Pisa, 1975, 4(2): 523-555

[5]

Bertsch M., Rostamian R.. The principle of linearized stability for a class of degenerate diffusion equations. J. Differ. Equat, 1985, 57: 373-405

[6]

Bensoussan A., Brezis H., Friedman A.. Estimates on the free boundary for quasi variational inequalities. Comm. PDEs, 1977, 2: 297-321

[7]

Brezis, H., Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to Nonlinear Functional Analysis, E. Zarantonello (ed.), Academic Press, New York, 1971, 101–156.

[8]

Brezis H.. Operateurs Maximaux Monotones et Semigroupes de Contractions Dans les Espaces de Hilbert, 1973

[9]

Brezis H.. Solutions of variational inequalities with compact support. Uspekhi Mat. Nauk., 1974, 129: 103-108

[10]

Brezis H., Lieb E.. A relation between pointwise convergence of functions and convergence of functionals. Proceedings of the American Mathematical Society, 1983, 88(3): 486-490

[11]

Brezis H., Lieb E.. Minimum action solutions of some vector field equations. Comm. Math. Phys., 1984, 96: 97-113

[12]

Brezis H., Nirenberg L.. Removable singularities for nonlinear elliptic equations. Topol. Methods Nonlinear Anal., 1997, 9: 201-219

[13]

Brezis H., Friedman A.. Estimates on the support of solutions of parabolic variational inequalities. Illinois J. Math., 1976, 20: 82-97

[14]

Cazenave T., Dickstein T., Escobedo M.. A semilinear heat equation with concave-convex nonlinearity. Rendiconti di Matematica, Serie VII, 1999, 19: 211-242

[15]

Cazenave T., Haraux A.. An introduction to semilinear evolution equations, 1998, New York: Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press

[16]

Cortázar C., Elgueta M., Felmer P.. Symmetry in an elliptic problem and the blow-up set of a quasilinear heat equation. Comm. PDEs, 1996, 21: 507-520

[17]

Cortázar C., Elgueta M., Felmer P.. On a semi-linear elliptic problem in RNwith a non-Lipschitzian non-linearity. Advances in Diff. Eqs., 1996, 1: 199-218

[18]

Daners D., Koch Medina P.. Abstract evolution equations, periodic problems and applications, Pitman Research Notes in Mathematics Series, 1992

[19]

Dao A. N., Díaz J. I., Sauvy P.. Quenching phenomenon of singular parabolic problems with L1 initial data. Electronic J. Diff. Eqs., 2016, 2016(136): 1-16

[20]

Dávila J., Montenegro M.. Existence and asymptotic behavior for a singular parabolic equation. Transactions of the AMS, 2005, 357: 1801-1828

[21]

Díaz J. I.. Nonlinear Partial Differential Equations and Free Boundaries, 1985

[22]

Díaz J. I. Chipot M. On the Haïm Brezis pioneering contributions on the location of free boundaries. Proceedings of the Fifth European Conference on Elliptic and Parabolic Problems; A special tribute to the work of Haïm Brezis, 2005, Bassel: Birkhauser Verlag 217-234

[23]

Díaz J. I.. On the ambiguous treatment of the Schrödinger equation for the infinite potential well and an alternative via flat solutions: The one-dimensional case. Interfaces and Free Boundaries, 2015, 17: 333-351

[24]

Díaz, J. I., On the ambiguous treatment of the Schrödinger equation for infinite potential well and an alternative via flat solutions: The multi-dimensional case, to appear.

[25]

Díaz J. I., Hernández J.. Global bifurcation and continua of non-negative solutions for a quasilinear elliptic problem. C. R. Acad. Sci. Paris, 1999, 329: 587-592

[26]

Díaz J. I., Hernández J.. Positive and nodal solutions bifurcating from the infinity for a semilinear equation: Solutions with compact support. Portugaliae Math., 2015, 72(2): 145-160

[27]

Díaz J. I., Hernández J., Ilyasov Y.. On the existence of positive solutions and solutions with compact support for a spectral nonlinear elliptic problem with strong absorption. Nonlinear Analysis Series A: Theory, Mehods and Applications, 2015, 119: 484-500

[28]

Díaz, J. I., Hernández, J. and Maagli, H., in preparation.

[29]

Díaz J. I., Hernández J., Mancebo F. J.. Branches of positive and free boundary solutions for some singular quasilinear elliptic problems. J. Math. Anal. Appl., 2009, 352: 449-474

[30]

Díaz J. I., Mingazzini T., Ramos A. M.. On the optimal control for a semilinear equation with cost depending on the free boundary. Networks and Heterogeneous Media, 2012, 7: 605-615

[31]

Díaz J. I., Tello L.. On a nonlinear parabolic problem on a Riemannian manifold without boundary arising in Climatology. Collectanea Mathematica, L, 1999 19-51

[32]

Díaz, J. I. and Vrabie, I. I., Existence for reaction-diffusion systems, A compactness method approach, J. Math. Anal. Appl., 188, 1994, 521–540.

[33]

Giacomoni J., Sauvy P., Shmarev S.. Complete quenching for a quasilinear parabolic equation. J. Math. Anal. Appl., 2014, 410: 607-624

[34]

Lions, P. L., The concentration-compactness principle in the calculus of variations, The locally compact case, Part 2, Annales de l’Institut Henri Poincaré: Analyse Non Linèaire, 1(4), 1984, 223–283.

[35]

Dickstein, F., On semilinear parabolic problems with non-Lipschitz nonlinearity, to appear.

[36]

Fujita H., Watanabe S.. On the uniqueness and non-uniqueness of solutions of initial value problems for some quasi-linear parabolic equations. Comm. Pure Appl. Math., 1968, 21: 631-652

[37]

Gilbarg D., Trudinger N. S.. Elliptic Partial Differential Equations of Second Oder, 1983, Berlin: Springer-Verlag

[38]

Hernández J., Mancebo F. J., Vega J. M.. On the linearization ofsome singular nonlinear elliptic problems and applications. Annales de l’Institut Henri Poincaré: Analyse Non Linèaire, 2002, 19: 777-813

[39]

Il’yasov Y. S.. Nonlocal investigations of bifurcations of solutions of nonlinear elliptic equations. Izv. Math., 2002, 66(6): 1103-1130

[40]

Il’yasov, Y. S., On calculation of the bifurcations by the fibering approach, Harmonic, Wavelet and P-adic Analysis, N. M. Chuong, et al. (eds.), World Scientific Publishing, Singapore, 2007, 141–155.

[41]

Il’yasov Y. S.. On critical exponent for an elliptic equation with non-Lipschitz nonlinearity, 2011 698-706

[42]

Il’yasov Y. S., Egorov Y.. Höpf maximum principle violation for elliptic equations with non-Lipschitz nonlinearity. Nonlin. Anal., 2010, 72: 3346-3355

[43]

Il’yasov Y. S., Takac P.. Optimal-regularity, Pohozhaev’s identity, and nonexistence of weak solutions to some quasilinear elliptic equations. Journal of Differential Equations, 2012, 252(3): 2792-2822

[44]

Kaper H., Kwong M.. Free boundary problems for Emden-Fowler equation. Differential and Integral Equations, 1990, 3: 353-362

[45]

Kaper H., Kwong M., Li Y.. Symmetry results for reaction-diffusion equations. Differential and Integral Equations, 1993, 6: 1045-1056

[46]

Ozolins V., Lai R., Caflisch R., Osher S.. Compressed modes for variational problems in mathematics and physics. Proc. Natl. Acad. Sci. USA, 2013, 110(46): 18368-18373

[47]

Ozolins V., Lai R., Caflisch R., Osher S.. Compressed plane waves yield a compactly supported multiresolution basis for the Laplace operator. Proc. Natl. Acad. Sci. USA, 2014, 111(5): 1691-1696

[48]

Payne L. E., Sattinger D. H.. Saddle points and instability of nonlinear hyperbolic equations. Israel Journal of Mathematics, 1975, 22(3–4): 273-303

[49]

Pohozaev S. I.. Eigenfunctions of the equation u+f(u) = 0. Sov. Math. Doklady, 1965, 5: 1408-1411

[50]

Pohozaev S. I.. On the method of fibering a solution in nonlinear boundary value problems. Proc. Stekl. Ins. Math., 1990, 192: 157-173

[51]

Serrin J., Zhou H.. Symmetry of ground states of quasilinear elliptic equations. Archive for Rational Mechanics and Analysis, 1999, 148(4): 265-290

[52]

Szulkin, A. and Weth, T., The method of Nehari manifold, Handbook of nonconvex analysis and applications, D. Y. Gao et al. (ed.), International Press, Somerville, MA,2010, 597–632.

[53]

Struwe M.. Variational Methods, Application to Nonlinear Partial Differential Equations and Hamiltonian Systems, 1996, Berlin: Springer-Verlag

[54]

Vrabie I. I.. Compactness Methods for Nonlinear Evolutions, 1987, London: Pitman Longman

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/