Recovery of immersions from their metric tensors and nonlinear Korn inequalities: A brief survey

Philippe G. Ciarlet , Cristinel Mardare , Sorin Mardare

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (1) : 253 -280.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (1) : 253 -280. DOI: 10.1007/s11401-016-1070-5
Article

Recovery of immersions from their metric tensors and nonlinear Korn inequalities: A brief survey

Author information +
History +
PDF

Abstract

The authors discuss the existence and uniqueness up to isometries of E n of immersions ϕ: Ω ⊂ R n → E n with prescribed metric tensor field (g ij): Ω → S> n, and discuss the continuity of the mapping (g ij) → ϕ defined in this fashion with respect to various topologies. In particular, the case where the function spaces have little regularity is considered. How, in some cases, the continuity of the mapping (g ij) → ϕ can be obtained by means of nonlinear Korn inequalities is shown.

Keywords

Isometric immersions / Nonlinear Korn inequalities / Metric tensor

Cite this article

Download citation ▾
Philippe G. Ciarlet, Cristinel Mardare, Sorin Mardare. Recovery of immersions from their metric tensors and nonlinear Korn inequalities: A brief survey. Chinese Annals of Mathematics, Series B, 2017, 38(1): 253-280 DOI:10.1007/s11401-016-1070-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abraham R., Marsden J. E., Ratiu T.. Manifolds, Tensor Analysis, and Applications, 1988, New York: Springer-Verlag

[2]

Adams R. A.. Sobolev Spaces, 1975, New York: Academic Press

[3]

Brezis H.. Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2011, New York: Springer-Verlag

[4]

Choquet-Bruhat Y., Dewitt-Morette C., Dillard-Bleick M.. Analysis, Manifolds and Physics, North-Holland, 1977

[5]

Ciarlet P. G.. Linear and Nonlinear Functional Analysis with Applications, 2013

[6]

Ciarlet P. G., Larsonneur F.. On the recovery of a surface with prescribed first and second fundamental forms. J. Math. Pures Appl., 2002, 81: 167-185

[7]

Ciarlet P. G., Laurent F.. Continuity of a deformation as a function of its Cauchy-Green tensor. Arch. Rational Mech. Anal., 2003, 167: 255-269

[8]

Ciarlet P. G., Mardare C.. Recovery of a manifold with boundary and its continuity as a function of its metric tensor. J. Math. Pures Appl., 2004, 83: 811-843

[9]

Ciarlet P. G., Mardare C.. Nonlinear Korn inequalities. J. Math. Pures Appl., 2015, 104: 1119-1134

[10]

Ciarlet P. G., Mardare C.. Inégalités de Korn non linéaires dans Rn, avec ou sans conditions aux limites. C. R. Acad. Sci. Paris, Ser. I, 2015, 353: 563-568

[11]

Ciarlet P. G., Mardare S.. Nonlinear Korn inequalities in Rn and immersions in W2,p,p > n,considered as functions of their metric tensors in W1,p. J. Math. Pures Appl., 2016, 105: 873-906

[12]

Ciarlet P. G., Mardare S.. Une inégalité de Korn non linéaire dans W2,p, p > n. C. R. Acad. Sci. Paris, Sér. I, 2015, 353: 905-911

[13]

Conti S.. Low-Energy Deformations of Thin Elastic Plates: Isometric Embeddings and Branching Patterns, Habilitationsschrift, 2004

[14]

Friesecke G., James R. D., Müller S.. A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Comm. Pure Appl. Math., 2002, 55: 1461-1506

[15]

Malliavin P.. Géométrie Différentielle Intrinsèque, 1992

[16]

Mardare C.. On the recovery of a manifold with prescribed metric tensor. Analysis and Applications, 2003, 1: 433-453

[17]

Mardare S.. On systems of first order linear partial differential equations with Lp coefficients. Adv. Diff. Eq., 2007, 12: 301-360

[18]

Mardare S.. On isometric immersions of a Riemannian space with little regularity. Analysis and Applications, 2004, 2: 193-226

[19]

Necas J.. Les Méthodes Directes en Théorie des Equations Elliptiques, 1967

[20]

Whitney H.. Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc., 1934, 36: 63-89

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/