Variations on a proof of a borderline Bourgain-Brezis Sobolev embedding theorem

Sagun Chanillo , Jean Van Schaftingen , Po-Lam Yung

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (1) : 235 -252.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (1) : 235 -252. DOI: 10.1007/s11401-016-1069-y
Article

Variations on a proof of a borderline Bourgain-Brezis Sobolev embedding theorem

Author information +
History +
PDF

Abstract

This paper offers a variant of a proof of a borderline Bourgain-Brezis Sobolev embedding theorem on ℝ n. The authors use this idea to extend the result to real hyperbolic spaces ℍ n.

Keywords

Bourgain-Brezis inequalities / Divergence-free vector fields / Sobolev inequalities / Real hyperbolic space

Cite this article

Download citation ▾
Sagun Chanillo, Jean Van Schaftingen, Po-Lam Yung. Variations on a proof of a borderline Bourgain-Brezis Sobolev embedding theorem. Chinese Annals of Mathematics, Series B, 2017, 38(1): 235-252 DOI:10.1007/s11401-016-1069-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bourgain J., Brezis H.. Sur l’équation div u = f. C. R. Math. Acad. Sci. Paris, 2002, 334(11): 973-976

[2]

Bourgain J., Brezis H.. On the equation div Y = f and application to control of phases. J. Amer. Math. Soc., 2003, 16(2): 393-426

[3]

Bourgain J., Brezis H.. New estimates for the Laplacian. the div-curl, and related Hodge systems, C. R. Math. Acad. Sci. Paris, 2004, 338(7): 539-543

[4]

Bourgain J., Brezis H.. New estimates for elliptic equations and Hodge type systems. J. Eur. Math. Soc. (JEMS), 2007, 9(2): 277-315

[5]

Hebey E.. Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, 1999, New York University, Courant Institute of Mathematical Sciences: New York; American Mathematical Society, Providence, RI

[6]

Lanzani L., Stein E. M.. A note on div-curl inequalities. Math. Res. Lett., 2005, 12(1): 57-61

[7]

Li P.. Lecture notes on geometric analysis, Lecture Notes Series, 1993, Seoul: Seoul National University, Research Institute of Mathematics, Global Analysis Research Center

[8]

Van Schaftingen J.. A simple proof of an inequality of Bourgain, Brezis and Mironescu. C. R. Math. Acad. Sci. Paris, 2004, 338(1): 23-26

[9]

Van Schaftingen J.. Estimates for L1-vector fields. C. R. Math. Acad. Sci. Paris, 2004, 339(3): 181-186

[10]

Van Schaftingen J.. Limiting Bourgain-Brezis estimates for systems of linear differential equations: Theme and variations. J. Fixed Point Theory Appl., 2014, 15(2): 273-297

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/