Isoperimetric, Sobolev, and eigenvalue inequalities via the Alexandroff-Bakelman-Pucci method: A survey

Xavier Cabré

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (1) : 201 -214.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (1) : 201 -214. DOI: 10.1007/s11401-016-1067-0
Article

Isoperimetric, Sobolev, and eigenvalue inequalities via the Alexandroff-Bakelman-Pucci method: A survey

Author information +
History +
PDF

Abstract

This paper presents the proof of several inequalities by using the technique introduced by Alexandroff, Bakelman, and Pucci to establish their ABP estimate. First, the author gives a new and simple proof of a lower bound of Berestycki, Nirenberg, and Varadhan concerning the principal eigenvalue of an elliptic operator with bounded measurable coefficients. The rest of the paper is a survey on the proofs of several isoperimetric and Sobolev inequalities using the ABP technique. This includes new proofs of the classical isoperimetric inequality, the Wulff isoperimetric inequality, and the Lions-Pacella isoperimetric inequality in convex cones. For this last inequality, the new proof was recently found by the author, Xavier Ros-Oton, and Joaquim Serra in a work where new Sobolev inequalities with weights came up by studying an open question raised by Haim Brezis.

Keywords

Isoperimetric inequalities / Principal eigenvalue / Wulff shapes / ABP estimate

Cite this article

Download citation ▾
Xavier Cabré. Isoperimetric, Sobolev, and eigenvalue inequalities via the Alexandroff-Bakelman-Pucci method: A survey. Chinese Annals of Mathematics, Series B, 2017, 38(1): 201-214 DOI:10.1007/s11401-016-1067-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berestycki H., Nirenberg L.. On the method of moving planes and the sliding method. Bol. Soc. Brasil. Mat. (N.S.), 1991, 22: 1-37

[2]

Berestycki H., Nirenberg L., Varadhan S. R. S.. The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Comm. Pure Appl. Math., 1994, 47: 47-92

[3]

Besson G.. From isoperimetric inequalities to heat kernels via symmetrisation, 2004

[4]

Brezis H.. Is there failure of the inverse function theorem? Morse theory, minimax theory and their applications to nonlinear differential equations. Proc. Workshop held at the Chinese Acad. of Sciences, 1999 23-33

[5]

Brezis H., Lions P.-L.. An estimate related to the strong maximum principle. Boll. Un. Mat. Ital. A, 1980, 17(5): 503-508

[6]

Brezis H., Vázquez J. L.. Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madrid, 1997, 10: 443-469

[7]

Cabré X.. On the Alexandroff-Bakelman-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations. Comm. Pure Appl. Math., 1995, 48: 539-570

[8]

Cabré X.. Partial differential equations. geometry, and stochastic control (in Catalan), Butl. Soc. Catalana Mat., 2000, 15: 7-27

[9]

Cabré X.. Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations. Discrete Contin. Dyn. Syst., 2002, 8: 331-359

[10]

Cabré X.. Elliptic PDEs in probability and geometry. symmetry and regularity of solutions, Discrete Contin. Dyn. Syst., 2008, 20: 425-457

[11]

Cabré X.. Regularity of minimizers of semilinear elliptic problems up to dimension four. Comm. Pure Appl. Math., 2010, 63: 1362-1380

[12]

Cabré, X., Cinti, E., Pratelli, A., et al., Quantitative isoperimetric inequalities with homogeneous weights, in preparation.

[13]

Cabré X., Ros-Oton X.. Regularity of stable solutions up to dimension 7 in domains of double revolution. Comm. Partial Differential Equations, 2013, 38: 135-154

[14]

Cabré X., Ros-Oton X.. Sobolev and isoperimetric inequalities with monomial weights. J. Differential Equations, 2013, 255: 4312-4336

[15]

Cabré X., Ros-Oton X., Serra J.. Euclidean balls solve some isoperimetric problems with nonradial weights. C. R. Math. Acad. Sci. Paris, 2012, 350: 945-947

[16]

Cabré X., Ros-Oton X., Serra J.. Sharp isoperimetric inequalities via the ABP method. J. Eur. Math. Soc., 2016, 18: 2971-2998

[17]

Cabré X., Sanchón M., Spruck J.. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete Contin. Dyn. Syst., Series A, 2016, 36: 601-609

[18]

Caffarelli L. A., Cabré X.. Fully Nonlinear Elliptic Equations, Colloquium Publications, 1995, Providence, RI: American Mathematical Society

[19]

Chavel I.. Riemannian Geometry: A Modern Introduction, 2nd Revised Edition, 2006, Cambridge: Cambridge University Press

[20]

Cordero-Erausquin C., Nazaret B., Villani C.. A mass transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math., 2004, 182: 307-332

[21]

Dinghas A.. Über einen geometrischen satz von Wulff für die gleichgewichtsform von kristallen. Zeitschrift für Kristallographie, 1944, 105: 304-314

[22]

Druet, O., Isoperimetric inequalities on nonpositively curved spaces, Lecture Notes. http://math.arizona.edu/˜dido/presentations/Druet-Carthage.pdf

[23]

Fusco N.. The stability of the isoperimetric inequality, CNA Summer School, 2013, Pittsburgh: Carnegie Mellon University

[24]

Gardner R. J.. The Brunn-Minkowski inequality. Bull. Amer. Math. Soc., 2002, 39: 355-405

[25]

Gilbarg D., Trudinger N. S.. Elliptic Partial Differential Equations of Second Order, 1983

[26]

Gromov M.. Isoperimetric inequalities Riemannian manifolds, asymptotic theory of finite-dimensional normed spaces, 1986

[27]

Hörmander L.. Linear Partial Differential Operators, 1969

[28]

Klimov, V. S., On the symmetrization of anisotropic integral functionals, Izv. Vyssh. Uchebn. Zaved. Mat., 99, 1999, 26–32 (in Russian); translation in Russian Math. (Iz. VUZ), 43, 1999, 23–29.

[29]

Lions P.-L., Pacella F.. Isoperimetric inequality for convex cones. Proc. Amer. Math. Soc., 1990, 109: 477-485

[30]

Milman E., Rotem L.. Complemented Brunn-Minkowski inequalities and isoperimetry for homogeneous and non-homogeneous measures. Adv. Math., 2014, 262: 867-908

[31]

Osserman R.. The isoperimetric inequality. Bull. Amer. Math. Soc., 1978, 84: 1182-1238

[32]

Serra, J. and Teixidó, M., Isoperimetric inequality in Hadamard manifolds of dimension two via the ABP method, in preparation.

[33]

Taylor J.. Existence and structure of solutions to a class of nonelliptic variational problems. Symposia Mathematica, 1974, 14: 499-508

[34]

Taylor J.. Unique structure of solutions to a class of nonelliptic variational problems. Proc. Symp. Pure Math., A. M. S., 1975, 27: 419-427

[35]

Trudinger, N. S., Isoperimetric inequalities for quermassintegrals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11, 1994, 411–425.

[36]

Van Schaftingen J.. Anisotropic symmetrization. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2006, 23: 539-565

[37]

Wulff G.. Zur frage der geschwindigkeit des wachsturms und der auflösung der kristallflächen. Zeitschrift für Kristallographie, 1901, 34: 449-530

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/