Porous medium flow with both a fractional potential pressure and fractional time derivative

Mark Allen , Luis Caffarelli , Alexis Vasseur

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (1) : 45 -82.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (1) : 45 -82. DOI: 10.1007/s11401-016-1063-4
Article

Porous medium flow with both a fractional potential pressure and fractional time derivative

Author information +
History +
PDF

Abstract

The authors study a porous medium equation with a right-hand side. The operator has nonlocal diffusion effects given by an inverse fractional Laplacian operator. The derivative in time is also fractional and is of Caputo-type, which takes into account “memory”. The precise model is $D_t^\alpha u - div\left( {u - {{\left( { - \Delta } \right)}^{ - \sigma }}u} \right) = f,0 < \sigma < \frac{1}{2}.$ This paper poses the problem over {t ∈ R+, x ∈ R n} with nonnegative initial data u(0, x) ≥ 0 as well as the right-hand side f ≥ 0. The existence for weak solutions when f, u(0, x) have exponential decay at infinity is proved. The main result is Hölder continuity for such weak solutions.

Keywords

Caputo derivative / Marchaud derivative / Porous medium equation / Hölder continuity / Nonlocal diffusion

Cite this article

Download citation ▾
Mark Allen, Luis Caffarelli, Alexis Vasseur. Porous medium flow with both a fractional potential pressure and fractional time derivative. Chinese Annals of Mathematics, Series B, 2017, 38(1): 45-82 DOI:10.1007/s11401-016-1063-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen M., Caffarelli L., Vasseur A.. A parabolic problem with a fractional time derivative. Arch. Ration. Mech. Anal., 2016, 221(2): 603-630

[2]

Bernardis A., Martín-Reyes F. J., Stinga P. R. Maximum principles. extension problem and inversion for nonlocal one-sided equations, J. Diff. Equ., 2016, 260(7): 6333-6362

[3]

Bucur C., Ferrari F.. An extension problem for the fractional derivative defined by Marchaud. Fract. Calc. Appl. Anal., 2016, 19(4): 867-887

[4]

Caffarelli L., Chan C. H., Vasseur A.. Regularity theory for parabolic nonlinear integral operators. J. Amer. Math. Soc., 2011, 24(3): 849-869

[5]

Caffarelli L., Soria F., Vázquez J. L.. Regularity of solutions of the fractional porous medium flow. J. Eur. Math. Soc. (JEMS), 2013, 15(5): 1701-1746

[6]

Caffarelli L., Vazquez J. L.. Nonlinear porous medium flow with fractional potential pressure. Arch. Ration. Mech. Anal., 2011, 202(2): 537-565

[7]

Caputo M.. Diffusion of fluids in porous media with memory. Geothermics, 1999, 28(1): 113-130

[8]

Del-Castillo-Negrete, D., Carreras, B. A. and Lynch, V. E., Fractional diffusion in plasma turbulence, Physics of Plasmas, 11(8), 2004, 3854–3864.

[9]

Del-Castillo-Negrete D., Carreras B. A., Lynch V. E.. Nondiffusive transport in plasma turbulene: A fractional diffusion approach. Physical Review Letters, 2004, 94(6): 065003

[10]

Di Nezza E., Palatucci G., Valdinoci E.. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math., 2012, 136(5): 521-573

[11]

Diethelm K.. The analysis of fractional differential equations, An application-oriented exposition using differential operators of Caputo type, 2010

[12]

Gilbarg D., Trudinger N. S.. Elliptic partial differential equations of second order, Classics in Mathematics, 2001, Berlin: Springer-Verlag

[13]

Metzler R., Klafter J.. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep., 2000, 339(1): 1-77

[14]

Samko S. G., Kilbas A. A., Marichev O. I.. Fractional integrals and derivatives, 1993, Yverdon: Gordon and Breach Science Publishers

[15]

Triebel H.. Theory of function spaces, Modern Birkhäuser Classics, 2010, Basel: Birkhäuser/Springer Basel AG

[16]

Vázquez J. L.. The porous medium equation, Oxford Mathematical Monographs, Mathematical Theory, 2007, Oxford: The Clarendon Press, Oxford University Press

[17]

Zacher R.. Global strong solvability of a quasilinear subdiffusion problem. J. Evol. Equ., 2012, 12(4): 813-831

[18]

Zaslavsky G. M.. Chaos, fractional kinetics, and anomalous transport. Phys. Rep., 2002, 371(6): 461-580

[19]

Zhou X. H., Xiao W. L., Chen J. C.. Fractional porous medium and mean field equations in Besov spaces. Electron. J. Differential Equations, 2014, 2014(199): 1-14

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/