Catenoidal layers for the Allen-Cahn equation in bounded domains

Oscar Agudelo , Manuel Del Pino , Juncheng Wei

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (1) : 13 -44.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (1) : 13 -44. DOI: 10.1007/s11401-016-1062-5
Article

Catenoidal layers for the Allen-Cahn equation in bounded domains

Author information +
History +
PDF

Abstract

This paper presents a new family of solutions to the singularly perturbed Allen-Cahn equation α 2Δu + u(1 − u 2) = 0 in a smooth bounded domain Ω ⊂ R3, with Neumann boundary condition and α > 0 a small parameter. These solutions have the property that as α → 0, their level sets collapse onto a bounded portion of a complete embedded minimal surface with finite total curvature intersecting ∂Ω orthogonally and that is non-degenerate respect to ∂Ω. The authors provide explicit examples of surfaces to which the result applies.

Keywords

Allen-Cahn equation / Critical minimal surfaces / Critical catenoid / Infinite dimensional gluing method / Neumann boundary condition

Cite this article

Download citation ▾
Oscar Agudelo, Manuel Del Pino, Juncheng Wei. Catenoidal layers for the Allen-Cahn equation in bounded domains. Chinese Annals of Mathematics, Series B, 2017, 38(1): 13-44 DOI:10.1007/s11401-016-1062-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agudelo O., del Pino M., Wei J. C.. Solutions with multiple catenoidal ends to the Allen-Cahn equation in R3. J. Math. Pures Appl., 2015, 103(1): 142-218

[2]

Allen S., Cahn J. W.. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall., 1979, 27: 1084-1095

[3]

Bardi M., Perthame B.. Exponential decay to stable states in phase transitions via a double logtransformation. Comm. Partial Differential Equations, 1990, 15(12): 1649-1669

[4]

Caffarelli L., Cordoba A.. Uniform convergence of a singular perturbation problem. Comm. Pure and Appl. Math., 1995, XLVI: 1-12

[5]

Caffarelli L., Cordoba A.. Phase transitions: Uniform regularity of the intermediate layers. J. Reine Angew. Math., 2006, 593: 209-235

[6]

Casten R., Holland C. J.. Instability results for reaction diffusion equations with Neumann boundary conditions. J. Differential Equations, 1978, 27(2): 266-273

[7]

Costa C. J.. Imersoes minimas en R3 de genero un e curvatura total finita, 1982

[8]

Costa C. J.. Example of a complete minimal immersions in R3 of genus one and three embedded ends. Bol. Soc. Bras. Mat., 1984, 15(1–2): 47-54

[9]

Del Pino M., Kowalczyk M., Wei J. C.. The Toda system and clustering interfaces in the Allen-Cahn equation. Arch. Ration. Mech. Anal., 2008, 190(1): 141-187

[10]

Del Pino, M., Kowalczyk, M. and Wei, J. C., Entire solutions of the Allen-Cahn equation and complete embedded minimal surfaces of finite total curvature, J. Diff. Geometry, 93, 2013, 67–131.

[11]

Del Pino M., Kowalczyk M., Wei J. C., Yang J.. Interface foliations of a positively curved manifold near a closed geodesic. Geom. Funct. Anal., 2010, 20(4): 918-957

[12]

Du Z., Gui C.. Interior layers for an inhomogeneous Allen-Cahn equation. J. Differential Equations, 2010, 249: 215-239

[13]

Du, Z. and Lai, B., Transition layers for an inhomogeneus Allen-Cahn equation in Riemannian Manifolds, preprint.

[14]

Du Z., Wang L.. Interface foliation for an inhomogeneous Allen-Cahn equation in Riemmanian Manifolds, 2012

[15]

Fraser A., Li M.. Compactness of the space of embedded minimal surfaces with free boundary in three-manifolds with nonnegative Ricci curvature and convex boundary. J. Differential Geom., 2014, 96(2): 183-200

[16]

Fraser A., Schoen R.. The first Steklov eigenvalue. conformal geometry, and minimal surfaces, Adv. Math., 2011, 226(5): 4011-4030

[17]

Fraser A., Schoen R.. Sharp eigenvalue bounds and minimal surfaces in the ball, 2012

[18]

Garza-Hume C. E., Padilla P.. Closed geodesics on oval surfaces and pattern formation. Comm. Anal. Geom., 2003, 11(2): 223-233

[19]

Guo Y., Yang J.. Concentration on surfaces for a singularly perturbed Neumann problem in threedimensional domains. J. Differential Equations, 2013, 255(8): 2220-2266

[20]

Hoffman D., Karcher H.. Complete embedded minimal surfaces of finite total curvature. Geometry V, Encyclopaedia Math. Sci., 1997, 90: 5-93

[21]

Hoffman D., Meeks W. H.. A complete embedded minimal surface in R3 with genus one and three ends. J. Diff. Geom., 1985, 21: 109-127

[22]

Hoffman D., Meeks W. H.. Embedded minimal surfaces of finite topology. Ann. Math., 1990, 131: 1-34

[23]

Hutchinson J. E., Tonegawa Y.. Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory. Calc. Var., 2000, 10: 49-84

[24]

Kapouleas N.. Complete embedded minimal surfaces of finite total curvature. J. Differential Geom., 1997, 45: 95-169

[25]

Kohn R. V., Sternberg P.. Local minimizers and singular perturbations. Proc. Royal Soc. Edinburgh, 1989, 111A: 69-84

[26]

Kowalczyk M.. On the existence and Morse index of solutions to the Allen-Cahn equation in two dimensions. Ann. Mat. Pura Appl., 2005, 1844(1): 17-52

[27]

Li M. M.-C.. A general existence theorem for embedded minimal surfaces with free boundary. Comm. Pure Appl. Math., 2015, 68(2): 286-331

[28]

Matano H.. Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci., 1979, 15(2): 401-454

[29]

Modica L.. Convergence to minimal surfaces problem and global solutions of u = 2(u3-u). Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), 1979 223-244

[30]

Pacard F., Ritoré M.. From the constant mean curvature hypersurfaces to the gradient theory of phase transitions. J. Differential Geom., 2003, 64(3): 359-423

[31]

Padilla P., Tonegawa Y.. On the convergence of stable phase transitions. Comm. Pure Appl. Math., 1998, 51(6): 551-579

[32]

Pérez J., Ros A.. The space of properly embedded minimal surfaces with finite total curvature. Indiana Univ. Math. J., 1996, 45(1): 177-204

[33]

Tonegawa Y.. Phase field model with a variable chemical potential. Proc. Roy. Soc. Edinburgh Sect., 2002, A132(4): 993-1019

[34]

Sakamoto K.. Existence and stability of three-dimensional boundary-interior layers for the Allen-Cahn equation. Taiwanese J. Math., 2005, 9(3): 331-358

[35]

Sternberg P., Zumbrun K.. Connectivity of phase boundaries in strictly convex domains. Arch. Rational Mech. Anal., 1998, 141(4): 375-400

[36]

Wei J. C., Yang J.. Concentration on lines for a singularly perturbed Neumann problem in twodimensional domains. Indiana Univ. Math. J., 2007, 56(6): 3025-3073

[37]

Wei J. C., Yang J.. Toda system and interior clustering line concentration for a singularly perturbed Neumann problem in two dimensional domain. Discrete Contin. Dyn. Syst., 2008, A22(3): 465-508

AI Summary AI Mindmap
PDF

181

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/