Exact boundary observability for a kind of second-order quasilinear hyperbolic systems

Ke Wang

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (6) : 803 -820.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (6) : 803 -820. DOI: 10.1007/s11401-016-1051-8
Article

Exact boundary observability for a kind of second-order quasilinear hyperbolic systems

Author information +
History +
PDF

Abstract

Based on the theory of semi-global classical solutions to quasilinear hyperbolic systems, the local exact boundary observability for a kind of second-order quasilinear hyperbolic systems is obtained by a constructive method.

Keywords

First-order quasilinear hyperbolic systems / Second-order quasilinear hyperbolic systems / Exact boundary observability / Mixed initial-boundary value problem

Cite this article

Download citation ▾
Ke Wang. Exact boundary observability for a kind of second-order quasilinear hyperbolic systems. Chinese Annals of Mathematics, Series B, 2016, 37(6): 803-820 DOI:10.1007/s11401-016-1051-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo L. N., Wang Z. Q.. Exact boundary observability for nonautonomous quasilinear wave equations. J. Math. Anal. Appl., 2010, 364: 41-50

[2]

Hu L., Ji F. Q., Wang K.. Exact boundary controllability and observability for a coupled system of quasilinear wave equations. Chin. Ann. Math., Ser. B, 2013, 34(4): 479-490

[3]

Li T. T.. Exact boundary observability for 1-D quasilinear wave equations. Math. Meth. Appl. Sci., 2006, 29: 1543-1553

[4]

Li T. T.. Exact boundary observability for quasilinear hyperbolic systems. ESIAM: Control, Optimisation and Calculus Variations, 2008, 14: 759-766

[5]

Li T. T.. Controllability and Observability for Quasilinear Hyperbolic Systems, AIMS Series on Applied Mathematics, 2010, Springfield & Beijing: American Institute of Mathematical Sciences & Higher Education Press

[6]

Li T. T., Jin Y.. Semi-global C1 solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems. Chin. Ann. Math., Ser. B, 2001, 22(3): 325-336

[7]

Li T. T., Rao B. P.. Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems. Chin. Ann. Math., Ser. B, 2010, 31(5): 723-742

[8]

Li T. T., Rao B. P., Wang Z. Q.. A note on the one-side exact boundary observability for quasilinear hyperbolic systems. Georgian Math. J., 2008, 15: 571-580

[9]

Li T. T., Yu W. C.. Boundary Value Problems for Quasilinear Hyperbolic Systems, 1985, Durham: Duke Univ. Math. Ser. V, Duke Univ. Press

[10]

Lions J.-L.. Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev., 1988, 30: 1-68

[11]

Lions J.-L.. Exact Controllability, Stabilization and Perturbations for Distributed Systems (in Chinese), 2012, Beijing: Higher Education Press

[12]

Russell D. L.. Controllability and stabilization for linear partial differential equations, recent progress and open questions. SIAM Rev., 1978, 20: 639-739

[13]

Shang P. P., Zhuang K. L.. Exact observability for second order quasilinear hyperbolic equations (in Chinese). Chin. J. Engin. Math., 2009, 26: 618-636

[14]

Wang K.. Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems. Chin. Ann. Math., Ser. B, 2011, 32(6): 803-822

[15]

Yao M. S.. Advanced Algebra (in Chinese), 2005, Shanghai: Fudan University Press

[16]

Yu L. X.. Exact boundary observability for a kind of second order quasilinear hyperbolic systems and its applications. Nonlinear Analysis, 2010, 72: 4452-4465

[17]

Yu L. X.. Exact boundary observability for a kind of second-order quasilinear hyperbolic system. Nonlinear Analysis, 2011, 74: 1073-1087

[18]

Zuazua E.. Boundary observability for the space-discretization of the 1-D wave equation, C. R. Acad. Sci. Paris. Sér. I, 1998, 326: 713-718

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/