PDF
Abstract
Abstract This paper is concerned with stochastic H 2/H ∞ control problem for Poisson jump-diffusion systems with (x, u, v)-dependent noise, which are driven by Brownian motion and Poisson random jumps. A stochastic bounded real lemma (SBRL for short) for Poisson jump-diffusion systems is firstly established, which stands out on its own as a very interesting theoretical problem. Further, sufficient and necessary conditions for the existence of a state feedback H 2/H ∞ control are given based on four coupled matrix Riccati equations. Finally, a discrete approximation algorithm and an example are presented.
Keywords
Poisson jump-diffusion systems
/
Stochastic H 2/H ∞ control
/
Stochastic bounded real lemma
/
Indefinite stochastic Riccati equation
Cite this article
Download citation ▾
Meijiao Wang.
Stochastic H 2/H ∞ control for poisson jump-diffusion systems.
Chinese Annals of Mathematics, Series B, 2016, 37(5): 643-664 DOI:10.1007/s11401-016-1050-9
| [1] |
Boel R. K., Varaiya D.. Optimal control of jump processes. SIAM J. Contr. Optim., 1977, 15(1): 92-119
|
| [2] |
Chen B., Zhang W.. Stochastic H 2/H ∞ control with state-dependent noise. IEEE Trans. Automat. Contr., 2004, 49(1): 45-57
|
| [3] |
Chen W., Chen B.. Robust stabilization design for nonlinear stochastic system with Poisson noise via fuzzy interpolation method. Fuzzy Sets Syst., 2013, 217: 41-61
|
| [4] |
Doyle J. C., Glover K., Khargonekar P. P., Francis B.. State-space solutions to standard H 2 and H ∞ problems. IEEE Trans. Automat. Contr., 1989, 34: 831-847
|
| [5] |
Dragan V., Morozan T.. Stability and robust stabilization to linear stochastic systems described by differential equations with Markovian jumping and multiplicative white noise. Stochastic Analysis and Applications, 2002, 20(1): 33-92
|
| [6] |
Dragan V., Morozan T.. The linear quadratic optimization problems for a class of linear stochastic systems with multiplicative white noise and Markovian jumping. IEEE Trans. Automat. Contr., 2004, 49(5): 665-675
|
| [7] |
Dragan V., Morozan T., Stoica A.. Mathematical Methods in Robust Control of Discrete-Time Linear Stochatic Systems, 2010, New York: Springer-Verlag
|
| [8] |
Framstad N., Oksendal B., Sulem A.. Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs. J. Math. Econ., 2001, 35(2): 233-257
|
| [9] |
Gihman I. I., Skorohod A. V.. The Theory of Stochastic Processes III, 1979
|
| [10] |
Hinrichsen D., Pritchard A. J.. Stochastic H ∞. SIAM J. Contr. Optim., 1998, 36(5): 1504-1538
|
| [11] |
Hou T., Zhang W., Ma H.. Infinite horizon H 2/H ∞ optimal control for discrete-time Markov jump systems with (x,u,v)-dependent noise. J Glob. Optim., 2013, 57: 1245-1262
|
| [12] |
Ikeda N., Watanabe S.. Stochastic Differential Equations and Diffusion Processes, 1981, Amsterdam: North-Holland Publishing Company
|
| [13] |
Khargonekar P. P., Rotea M. A.. Mixed H 2/H ∞ control: A convex optimization approach. IEEE Trans. Automat. Contr., 1991, 36(7): 824-837
|
| [14] |
Limebeer, D. J. N., Anderson, B. D. O. and Hendel, B., A Nash game approach to mixed H 2/H ∞ control, IEEE Trans. Automat. Contr., 39(1), 1994, 69–82.
|
| [15] |
Lin Z., Lin Y., Zhang W.. A unified design for state and output feedback H ∞ control of nonlinear stochastic Markov jump systems with state and disturbance-dependent noise. Automatica, 2009, 45(12): 2955-2962
|
| [16] |
Lin X., Zhang R.. H ∞ control for stochastic systems with Poisson jumps. J. Syst. Sci. Complex, 2011, 24(4): 683-700
|
| [17] |
Merton R. C.. Option pricing when underlying stock returns are discontinuous. J. Financial Econ., 1976, 3: 125-144
|
| [18] |
Situ R.. Option pricing in mathematical financial market with jumps and related problems. Vietnam J. Math., 2002, 30(2): 103-122
|
| [19] |
Sweriduk G. D., Calise A. J.. Differential game approach to the mixed H 2/H ∞ problem. Journal of Guidance Control and Dynamics, 1997, 20: 1229-1234
|
| [20] |
Tang S., Li X.. Necessary condition for optimal control of stochastic systems with random jumps. SIAM J. Contr. Optim., 1994, 32(5): 1447-1475
|
| [21] |
Todorov M. G., Fragoso M. D.. Infinite Markov jump-bounded real lemma. Systems and Control Letters, 2008, 57: 64-70
|
| [22] |
Todorov M. G., Fragoso M. D.. A new perspective on the robustness of Markov jump linear systems. Automatica, 2013, 49: 735-747
|
| [23] |
Wang M.. Stochastic H 2/H ∞ control with random coefficients. Chin. Ann. Math. Ser. B, 2013, 34: 733-752
|
| [24] |
Yan H., Liu S.. Pricing options on stocks driven by Poisson jump-diffusion process. J. Engineering Mathematics, 2003, 20: 35-40
|
| [25] |
Yong J., Zhou X.. Stochastic Controls: Hamiltonian Systems and HJB Equations, 1999, Berlin, New York: Springer-Verlag
|
| [26] |
Zhang W., Chen B.. State feedback H ∞ control for a class of nonlinear stochastic systems. SIAM J. Contr. Optim., 2006, 44(6): 1973-1991
|
| [27] |
Zhang W., Zhang H., Chen B.. Stochastic H 2/H ∞ control with (x, u, v)-dependent noise: Finite horizon case. Automatica, 2006, 42: 1891-1898
|