Stochastic H 2/H control for poisson jump-diffusion systems

Meijiao Wang

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (5) : 643 -664.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (5) : 643 -664. DOI: 10.1007/s11401-016-1050-9
Article

Stochastic H 2/H control for poisson jump-diffusion systems

Author information +
History +
PDF

Abstract

Abstract This paper is concerned with stochastic H 2/H control problem for Poisson jump-diffusion systems with (x, u, v)-dependent noise, which are driven by Brownian motion and Poisson random jumps. A stochastic bounded real lemma (SBRL for short) for Poisson jump-diffusion systems is firstly established, which stands out on its own as a very interesting theoretical problem. Further, sufficient and necessary conditions for the existence of a state feedback H 2/H control are given based on four coupled matrix Riccati equations. Finally, a discrete approximation algorithm and an example are presented.

Keywords

Poisson jump-diffusion systems / Stochastic H 2/H control / Stochastic bounded real lemma / Indefinite stochastic Riccati equation

Cite this article

Download citation ▾
Meijiao Wang. Stochastic H 2/H control for poisson jump-diffusion systems. Chinese Annals of Mathematics, Series B, 2016, 37(5): 643-664 DOI:10.1007/s11401-016-1050-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boel R. K., Varaiya D.. Optimal control of jump processes. SIAM J. Contr. Optim., 1977, 15(1): 92-119

[2]

Chen B., Zhang W.. Stochastic H 2/H control with state-dependent noise. IEEE Trans. Automat. Contr., 2004, 49(1): 45-57

[3]

Chen W., Chen B.. Robust stabilization design for nonlinear stochastic system with Poisson noise via fuzzy interpolation method. Fuzzy Sets Syst., 2013, 217: 41-61

[4]

Doyle J. C., Glover K., Khargonekar P. P., Francis B.. State-space solutions to standard H 2 and H problems. IEEE Trans. Automat. Contr., 1989, 34: 831-847

[5]

Dragan V., Morozan T.. Stability and robust stabilization to linear stochastic systems described by differential equations with Markovian jumping and multiplicative white noise. Stochastic Analysis and Applications, 2002, 20(1): 33-92

[6]

Dragan V., Morozan T.. The linear quadratic optimization problems for a class of linear stochastic systems with multiplicative white noise and Markovian jumping. IEEE Trans. Automat. Contr., 2004, 49(5): 665-675

[7]

Dragan V., Morozan T., Stoica A.. Mathematical Methods in Robust Control of Discrete-Time Linear Stochatic Systems, 2010, New York: Springer-Verlag

[8]

Framstad N., Oksendal B., Sulem A.. Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs. J. Math. Econ., 2001, 35(2): 233-257

[9]

Gihman I. I., Skorohod A. V.. The Theory of Stochastic Processes III, 1979

[10]

Hinrichsen D., Pritchard A. J.. Stochastic H . SIAM J. Contr. Optim., 1998, 36(5): 1504-1538

[11]

Hou T., Zhang W., Ma H.. Infinite horizon H 2/H optimal control for discrete-time Markov jump systems with (x,u,v)-dependent noise. J Glob. Optim., 2013, 57: 1245-1262

[12]

Ikeda N., Watanabe S.. Stochastic Differential Equations and Diffusion Processes, 1981, Amsterdam: North-Holland Publishing Company

[13]

Khargonekar P. P., Rotea M. A.. Mixed H 2/H control: A convex optimization approach. IEEE Trans. Automat. Contr., 1991, 36(7): 824-837

[14]

Limebeer, D. J. N., Anderson, B. D. O. and Hendel, B., A Nash game approach to mixed H 2/H control, IEEE Trans. Automat. Contr., 39(1), 1994, 69–82.

[15]

Lin Z., Lin Y., Zhang W.. A unified design for state and output feedback H control of nonlinear stochastic Markov jump systems with state and disturbance-dependent noise. Automatica, 2009, 45(12): 2955-2962

[16]

Lin X., Zhang R.. H control for stochastic systems with Poisson jumps. J. Syst. Sci. Complex, 2011, 24(4): 683-700

[17]

Merton R. C.. Option pricing when underlying stock returns are discontinuous. J. Financial Econ., 1976, 3: 125-144

[18]

Situ R.. Option pricing in mathematical financial market with jumps and related problems. Vietnam J. Math., 2002, 30(2): 103-122

[19]

Sweriduk G. D., Calise A. J.. Differential game approach to the mixed H 2/H problem. Journal of Guidance Control and Dynamics, 1997, 20: 1229-1234

[20]

Tang S., Li X.. Necessary condition for optimal control of stochastic systems with random jumps. SIAM J. Contr. Optim., 1994, 32(5): 1447-1475

[21]

Todorov M. G., Fragoso M. D.. Infinite Markov jump-bounded real lemma. Systems and Control Letters, 2008, 57: 64-70

[22]

Todorov M. G., Fragoso M. D.. A new perspective on the robustness of Markov jump linear systems. Automatica, 2013, 49: 735-747

[23]

Wang M.. Stochastic H 2/H control with random coefficients. Chin. Ann. Math. Ser. B, 2013, 34: 733-752

[24]

Yan H., Liu S.. Pricing options on stocks driven by Poisson jump-diffusion process. J. Engineering Mathematics, 2003, 20: 35-40

[25]

Yong J., Zhou X.. Stochastic Controls: Hamiltonian Systems and HJB Equations, 1999, Berlin, New York: Springer-Verlag

[26]

Zhang W., Chen B.. State feedback H control for a class of nonlinear stochastic systems. SIAM J. Contr. Optim., 2006, 44(6): 1973-1991

[27]

Zhang W., Zhang H., Chen B.. Stochastic H 2/H control with (x, u, v)-dependent noise: Finite horizon case. Automatica, 2006, 42: 1891-1898

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/