New quantum MDS code from constacyclic codes

Liqin Hu , Qin Yue , Xiaomeng Zhu

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (6) : 891 -898.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (6) : 891 -898. DOI: 10.1007/s11401-016-1043-8
Article

New quantum MDS code from constacyclic codes

Author information +
History +
PDF

Abstract

In recent years, there have been intensive activities in the area of constructing quantum maximum distance separable (MDS for short) codes from constacyclic MDS codes through the Hermitian construction. In this paper, a new class of quantum MDS code is constructed, which extends the result of [Theorems 3.14–3.15, Kai, X., Zhu, S., and Li, P., IEEE Trans. on Inf. Theory, 60(4), 2014, 2080–2086], in the sense that our quantum MDS code has bigger minimum distance.

Keywords

Cyclotomic coset / Quantum MDS code / Constacyclic code / BCH bound

Cite this article

Download citation ▾
Liqin Hu, Qin Yue, Xiaomeng Zhu. New quantum MDS code from constacyclic codes. Chinese Annals of Mathematics, Series B, 2016, 37(6): 891-898 DOI:10.1007/s11401-016-1043-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aly S. A., Klappenecker A., Sarvepalli P. K.. On quantum and classical BCH codes. IEEE Trans. Inf. Theory, 2007, 53(3): 1183-1188

[2]

Ashikhmin A., Knill E.. Nonbinary quantum stablizer codes. IEEE Trans. Inf. Theory, 2001, 47(7): 3065-3072

[3]

Calderbank, A. R., Rains, E. M., Shor, P. W. and Sloane, N. J. A., Quantum error correction via codes over GF(4), IEEE Trans. Inf. Theory, 44(4), 1998, 1369–1387.

[4]

Chen H.. Some good quantum error-correcting codes from algebraic-geometric codes. IEEE Trans. Inf. Theory, 2001, 47(5): 2059-2061

[5]

Chen H., Ling S., Xing C.. Asymptotically good quantum codes exceeding the Ashikhmin-Litsyn-Tsfasman bound. IEEE Trans. Inf. Theory, 2001, 47(5): 2055-2058

[6]

Chen H., Ling S., Xing C.. Quantum codes from concatenated algebraic-geometric codes. IEEE Trans. Inf. Theory, 2005, 51(8): 2915-2920

[7]

Chen B., Ling S., Zhang G.. Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory, 2015, 61(3): 1474-1484

[8]

Feng K.. Quantum codes [[6,2,3]]p and [[7,3,3]]p (p = 3) exist. IEEE Trans. Inf. Theory, 2002, 48(8): 2384-2391

[9]

Feng K., Ling S., Xing C.. Asymptotic bounds on quantum codes from algebraic geometry codes. IEEE Trans. Inf. Theory, 2006, 52(3): 986-991

[10]

Grassl M., Beth T., Rötteler M.. On optimal quantum codes. Int. J. Quantum Inform., 2004, 2(1): 757-766

[11]

Rötteler M., Grassl M., Beth T.. On quantum MDS codes, Information Theory. Proceedings International Symposium on IEEE, 2004 356

[12]

Guardia G. G. L.. New quantum MDS codes. IEEE Trans. Inf. Theory, 2011, 57(8): 5551-5554

[13]

Hu X., Zhang G., Chen B.. Constructions of new nonbinary quantum codes. Int. J. Theor. Phys., 2014, 54(1): 92-99

[14]

Jin L., Ling S., Luo J., Xing C.. Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory, 2010, 56(9): 4735-4740

[15]

Jin L., Xing C.. Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes. IEEE Trans. Inf. Theory, 2012, 58: 5484-5489

[16]

Jin L., Xing C.. A construction of new quantum MDS codes. IEEE Trans. Inf. Theory, 2014, 60: 2921-2925

[17]

Kai X., Zhu S.. New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory, 2013, 59(2): 1193-1197

[18]

Kai X., Zhu S., Li P.. Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory, 2014, 60(4): 2080-2086

[19]

Ketkar A., Klappenecker A., Kumar S., Sarvepalli P. K.. Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory, 2006, 52(11): 4892-4914

[20]

Knill E., Laflamme R.. Theory of quantum error-correcting codes. Phys. Rev. A, 1997, 55(2): 900-911

[21]

Krishna A., Sarwate D. V.. Pseudocyclic maximum-distance separable codes. IEEE Trans. Inf. Theory, 1990, 36(4): 880-884

[22]

Li Z., Xing L. J., Wang X. M.. Quantum generalized Reed-Solomon codes: Unified framework for quantum maximum-distance separable codes. Phys. Rev. A, 2008, 77: 012308

[23]

Ling S., Luo L., Xing C.. Generalization of Steane’s enlargement construction of quantum codes and applications. IEEE Trans. Inf. Theory, 2010, 56(8): 4080-4084

[24]

Shor P. W.. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A, 1995, 52(4): 2493-2496

[25]

Steane A. M.. Multiple particle interference and quantum error correction. Proc. Roy. Soc. London A, 1996, 452(1): 2551-2577

[26]

Yang Y., Cai W.. On self-dual constacyclic codes over finite fields. Des., Codes Cryptogr., 2013, 74(2): 355-364

AI Summary AI Mindmap
PDF

326

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/