Symmetries and their lie algebra of a variable coefficient Korteweg-de Vries hierarchy

Xiaoying Zhu , Dajun Zhang

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (4) : 543 -552.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (4) : 543 -552. DOI: 10.1007/s11401-016-1020-2
Article

Symmetries and their lie algebra of a variable coefficient Korteweg-de Vries hierarchy

Author information +
History +
PDF

Abstract

Isospectral and non-isospectral hierarchies related to a variable coefficient Painlevé integrable Korteweg-de Vries (KdV for short) equation are derived. The hierarchies share a formal recursion operator which is not a rigorous recursion operator and contains t explicitly. By the hereditary strong symmetry property of the formal recursion operator, the authors construct two sets of symmetries and their Lie algebra for the isospectral variable coefficient Korteweg-de Vries (vcKdV for short) hierarchy.

Keywords

vcKdV hierarchies / Symmetries / Lie algebra

Cite this article

Download citation ▾
Xiaoying Zhu, Dajun Zhang. Symmetries and their lie algebra of a variable coefficient Korteweg-de Vries hierarchy. Chinese Annals of Mathematics, Series B, 2016, 37(4): 543-552 DOI:10.1007/s11401-016-1020-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Grimshaw R.. Slowly varying solitary waves, I. Korteweg-de Vries equation. Proc. Royal Soc. Lon. A-Math. Phys. Engin. Sci., 1979, 368: 359-375

[2]

Joshi N.. Painlevé property of general variable-coefficient versions of the Korteweg-de Vries and nonlinear Schrödinger equations. Phys. Lett. A, 1987, 125: 456-460

[3]

Zhang Y. C., Yao Z. Z., Zhu H. W. Exact analytic N-soliton-like solution in Wronskian form for a generalized variable-coefficient Korteweg-de Vries model from plasmas and fluid dynamics. Chin. Phys. Lett., 2007, 24: 1173-1176

[4]

Zhang Y. C., Li J., Meng X. H. Existence of formal conservation laws of a variable-coefficient Korteweg-de Vries equation from fluid dynamics and plasma physics via symbolic computation. Chin. Phys. Lett., 2008, 25: 878-880

[5]

Zhang D. J.. Conservation laws and Lax pair of the variable coefficient KdV equation. Chin. Phys. Lett., 2007, 24: 3021-3023

[6]

Hong W., Jung Y. D.. Auto-Bäcklund transformation and analytic solutions for general variablecoefficient KdV equation. Phys. Lett. A, 1999, 257: 149-152

[7]

Fan E. G.. Auto-Bäcklund transformation and similarity reductions for general variable coefficient KdV equations. Phys. Lett. A, 2002, 294: 26-30

[8]

Fuchssteiner B., Fokas A.. Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D, 1981, 4: 47-66

[9]

Fuchssteiner B.. Application of hereditary symmetries to nonlinear evolution equations, Nonlinear Analysis. TMA, 1979, 3: 849-862

[10]

Ma W. X.. K-symmetries and t-symmetries of evolution equations and their Lie algebras. J. Phys. A: Math. Gen., 1990, 23: 2707-2716

[11]

Ma W. X.. The algebraic structures of isospectral Lax operators and applications to integrable equations. J. Phys. A: Math. Gen., 1992, 25: 5329-5343

[12]

Ma W. X.. Lax representations and Lax operator algebras of isospectral and nonisospectral hierarchies of evolution equations. J. Math. Phys., 1992, 33: 2464-2476

[13]

Ma W. X., Fuchssteiner B.. Algebraic structure of discrete zero curvature equations and master symmetries of discrete evolution equations. J. Math. Phys., 1999, 40: 2400-2418

[14]

Tamizhmani K., Ma W. X.. Master symmetries from Lax operators for certain lattice soliton hierarchies. J. Phys. Soc. Jpn., 2000, 69: 351-361

[15]

Chen D. Y., Zhang H. W.. Lie algebraic structure for the AKNS system. J. Phys. A: Gen. Math. Phys., 1991, 24: 377-383

[16]

Chen D. Y., Zhang D. J.. Lie algebraic structures of (1+1)-dimensional Lax integrable systems. J. Math. Phys., 1996, 37: 5524-5538

[17]

Tian C.. Gu C. H.. Symmetries. Soliton Theory and Its Applications, 1996, Berlin: Springer-Verlag

[18]

Fuchssteiner B.. Master symmetries, higher order time-dependent symmetries and conserved densities of nonlinear evolution equations. Prog. Theo. Phys., 1983, 70: 1508-1522

AI Summary AI Mindmap
PDF

186

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/