Sharp distortion theorems for a subclass of biholomorphic mappings which have a parametric representation in several complex variables

Xiaosong Liu , Taishun Liu

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (4) : 553 -570.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (4) : 553 -570. DOI: 10.1007/s11401-016-1019-8
Article

Sharp distortion theorems for a subclass of biholomorphic mappings which have a parametric representation in several complex variables

Author information +
History +
PDF

Abstract

In this paper, the sharp distortion theorems of the Fréchet-derivative type for a subclass of biholomorphic mappings which have a parametric representation on the unit ball of complex Banach spaces are established, and the corresponding results of the above generalized mappings on the unit polydisk in C n are also given. Meanwhile, the sharp distortion theorems of the Jacobi determinant type for a subclass of biholomorphic mappings which have a parametric representation on the unit ball with an arbitrary norm in C n are obtained, and the corresponding results of the above generalized mappings on the unit polydisk in C n are got as well. Thus, some known results in prior literatures are generalized.

Keywords

Distortion theorem / A zero of order k + 1 / Fréchet-derivative / Jacobi determinant / Parametric representation

Cite this article

Download citation ▾
Xiaosong Liu, Taishun Liu. Sharp distortion theorems for a subclass of biholomorphic mappings which have a parametric representation in several complex variables. Chinese Annals of Mathematics, Series B, 2016, 37(4): 553-570 DOI:10.1007/s11401-016-1019-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Poreda T.. On the univalent holomorphic maps of the unit polydisc of Cn which have the parametric representation, I—the geometric properties. Ann. Univ. Mariae Curie Sklodowsda Sect. A, 1987, 41: 105-113

[2]

Kohr G.. Using the method of Löwner chains to introduce some subcalsses of biholomorphic mappings in Cn. Rev. Roum. Math. Pures Appl., 2001, 46: 743-760

[3]

Graham I., Hamada H., Kohr G.. Parametric representation of univalent mappings in several complex variables. Canadian J. Math., 2002, 54(2): 324-351

[4]

Kubicka E., Poreda T.. On the parametric representation of starlike maps of the unit ball in Cn into Cn. Demonstration Math., 1988, 21: 345-355

[5]

Kohr G., Liczberski P.. Univalent Mappings of Several Complex Variables, 1998, Cluj-Napoca, Romania: Cluj University Press

[6]

Hamada H., Honda T., Kohr G.. Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation. J. Math. Anal. Appl., 2006, 317(1): 302-319

[7]

Hamada H., Honda T.. Sharp growth theorems and coefficient bounds for starlike mappings in several complex variables. Chin. Ann. Math. Ser. B, 2008, 29(4): 353-368

[8]

Xu Q. H., Liu T. S.. Sharp growth and distortion theorems for a subclass of biholomorphic mappings. Computer Math. Appl., 2010, 59(12): 3778-3784

[9]

Xu Q. H., Liu T. S., Xu H. M.. Growth and distortion theorems for a subclass of holomorphic mappings in several complex variables. Chin. Ann. Math. Ser. A, 2014, 35(5): 565-574

[10]

Barnard R. W., FitzGerald C. H., Gong S.. A distortion theorem of biholomorphic convex mappings in C2. Trans. Amer. Math. Soc., 1994, 344(2): 907-924

[11]

Liu T. S., Zhang W. J.. A distortion theorem of biholomorphic convex mappings in Cn. Chin. Ann. Math. Ser. A, 1999, 20(4): 505-512

[12]

Gong S., Wang S. K., Yu Q. H.. Biholomorphic convex mappings of ball in Cn. Pacif. J. Math., 1993, 161(2): 287-306

[13]

Gong S., Liu T. S.. Distortion theorems for biholomorphic convex mappings on bounded convex circular domains. Chin. Ann. Math. Ser. B, 1999, 20(3): 297-304

[14]

Liu T. S., Zhang W. J.. A distortion theorem of biholomorphic convex mappings in a Banach space. Acta Math. Sin., 2003, 46(6): 1041-1046

[15]

Zhu Y. C., Liu M. S.. Distortion theorems for biholomorphic convex mappings in Banach spaces. Complex Variables, 2005, 50(1): 57-68

[16]

Chu C. H., Hamada H., Honda T., Kohr G.. Distortion theorems for convex mappings on homogeneous balls. J. Math. Anal. Appl., 2010, 369(2): 437-442

[17]

Hamada H., Kohr G.. Growth and distortion results for convex mappings in infinite dimensional spaces. Complex Variables, 2002, 47(4): 291-301

[18]

Liu T. S., Wang J. F., Lu J.. Distortion theorems for starlike mappings in several complex variables. Taiwanese J. Math., 2011, 15(6): 2601-2608

[19]

Liu X. S., Liu T. S.. On the sharp distortion theorems for a subclass of starlike mappings in several complex variables. Taiwanese J. Math., 2015, 19(2): 363-379

[20]

Hamada H., Kohr G., Liczberski P.. Starlike mappings of order a on the unit ball in complex Banach spaces. Glas. Mat. Ser. III, 2001, 36(1): 39-48

[21]

Xu Q. H., Liu T. S.. On coefficient estimates for a class of holomorphic mappings. Sci. China Ser. A-Math., 2009, 52(4): 677-686

[22]

Kohr G., Liczberski P.. On strongly starlikeness of order a in several complex variables. Glas. Mat., 1998, 33(53): 185-198

[23]

Feng S. X., Lu K. P.. The growth theorem for almost starlike mappings of order a on bounded starlike circular domains. Chin. Quart. J. Math., 2000, 15(2): 50-56

[24]

Chuaqui M.. Applications of subordination chains to starlike mappings in Cn. Pacif. J. Math., 1995, 168(1): 33-48

[25]

Honda T.. The growth theorem for k-fold symmetric convex mappings. Bull. London Math. Soc., 2002, 34(6): 717-724

[26]

Lin Y. Y., Hong Y.. Some properties of holomorphic maps in Banach spaces. Acta Math. Sin., 1995, 38(2): 234-241

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/