On robustness of orbit spaces for partially hyperbolic endomorphisms

Lin Wang

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (6) : 899 -914.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (6) : 899 -914. DOI: 10.1007/s11401-016-1018-9
Article

On robustness of orbit spaces for partially hyperbolic endomorphisms

Author information +
History +
PDF

Abstract

In this paper, the robustness of the orbit structure is investigated for a partially hyperbolic endomorphism f on a compact manifold M. It is first proved that the dynamical structure of its orbit space (the inverse limit space) M f of f is topologically quasi-stable under C 0-small perturbations in the following sense: For any covering endomorphism g C 0-close to f, there is a continuous map φ from M g to $\mathop \prod \limits_{ - \infty }^\infty M$ such that for any {y i} i∈Zφ(M g), y i+1 and f(y i) differ only by a motion along the center direction. It is then proved that f has quasi-shadowing property in the following sense: For any pseudo-orbit {x i} i∈ℤ, there is a sequence of points {y i} i∈ℤ tracing it, in which y i+1 is obtained from f(y i) by a motion along the center direction.

Keywords

Partially hyperbolic endomorphism / Orbit space / Quasi-stability / Quasishadowing

Cite this article

Download citation ▾
Lin Wang. On robustness of orbit spaces for partially hyperbolic endomorphisms. Chinese Annals of Mathematics, Series B, 2016, 37(6): 899-914 DOI:10.1007/s11401-016-1018-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anosov D.. Geodesic flows on closed Riemann manifolds with negative curvature. Proc. Steklov Inst. Math., 1967, 90: 3-210

[2]

Barreira L., Pesin Y.. Nonuniform Hyperbolicity, 2007, Cambridge: Cambridge University Press

[3]

Bonatti C., Diaz L., Viana M.. Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective, 2005, Berlin: Springer-Verlag

[4]

Brin M., Pesin Y.. Partially hyperbolic dynamical systems. MAth. USSR-Izv., 1974, 8: 177-218

[5]

Hirsch M., Pugh C., Shub M.. Invariant Manifolds, Lect. Notes in Math., 1977, Berlin: Springer-Verlag

[6]

Hu H., Zhu Y.. Quasi-stability of partially hyperbolic diffeomorphisms. Tran. Amer. Math. Soc., 2014, 366(7): 3787-3804

[7]

Hu H., Zhou Y., Zhu Y.. Quasi-shadowing for partially hyperbolic diffeomorphisms. Ergodic Theory Dynam. Systems, 2015, 35: 412-430

[8]

Kato K., Morimoto A.. Topological stability of Anosov flows and their centerizers. Topology, 1973, 12: 255-273

[9]

Kryzhevich S., Tikhomirov S.. Partial hyperbolicity and central shadowing. Discrete Contin. Dyn. Syst., 2013, 33: 2901-2909

[10]

Liu P.. Stability of orbit spaces of endomorphisms. Manuscripta Math., 1997, 93(1): 109-128

[11]

Liu P., Qian M.. Smooth Ergodic Theory of Random Dynamical Systems, Lect. Notes in Math., 1995, Berlin: Springer-Verlag

[12]

Mané R., Pugh C.. Stability of Endomorphisms, Lect. Notes in Math., 1974, Berlin: Springer-Verlag 175-184

[13]

Pesin Y.. Lectures on Partial Hyperbolicity and Stable Ergodicity, Zurich Lectures in Advanced Mathematics, 2004, Zurich: European Mathematical Society

[14]

Pilyugin, S. Y., Shadowing in Dynamical Systems, Lect. Notes in Math., Vol. 1706, Springer-Verlag, Berlin, 1999.

[15]

Przytycki F.. Anosov endomorphisms. Studia Math., 1976, 58: 249-285

[16]

Przytycki F.. O-stability and structural stability of endomorphisms. Studia Math., 1977, 60: 61-77

[17]

Pugh C., Shub M.. Ergodic attractors. Trans. Amer. Math. Society, 1989, 312: 1-54

[18]

Qian M., Xie J., Zhu S.. Smooth Ergodic Theory for Endomorphisms, Lect. Notes in Math., 2009, Berlin: Springer-Verlag

[19]

Shub M.. Endomorphisms of compact differentiable manifolds. Amer. J. Math., 1969, 91: 171-199

[20]

Walters P.. Anosov diffeomorphisms are topologically stable. Topology, 1970, 9: 71-78

[21]

Yang S. L.. More-to-one hyperbolic endomorphisms and hyperbolic sets. Acta Mathematica Sinica, 1986, 3: 420-427

[22]

Zhu Y., Zhang J., He L.. Shadowing and inverse shadowing for C1 endomorphisms. Acta Mathematica Sinica, 2006, 22(5): 1321-1328

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/