Augmentation quotients for complex representation rings of generalized quaternion groups

Shan Chang

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (4) : 571 -584.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (4) : 571 -584. DOI: 10.1007/s11401-016-1017-x
Article

Augmentation quotients for complex representation rings of generalized quaternion groups

Author information +
History +
PDF

Abstract

Denote by Q m the generalized quaternion group of order 4m. Let R(Q m) be its complex representation ring, and Δ(Q m) its augmentation ideal. In this paper, the author gives an explicit Z-basis for the Δ n(Q m) and determines the isomorphism class of the n-th augmentation quotient $\frac{{{\Delta ^n}\left( {{Q_m}} \right)}}{{{\Delta ^{n + 1}}\left( {{Q_m}} \right)}}$ for each positive integer n.

Keywords

Generalized quaternion groups / Representation ring / Augmentation quotients

Cite this article

Download citation ▾
Shan Chang. Augmentation quotients for complex representation rings of generalized quaternion groups. Chinese Annals of Mathematics, Series B, 2016, 37(4): 571-584 DOI:10.1007/s11401-016-1017-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fulton W., Harris J.. Representation Theory: A First Course, 1991, New York: Springer-Verlag

[2]

Curtis C. W., Reiner I.. Representation Theory of Finite Groups and Associative Algebras, 2006, Providence: American Mathematical Society

[3]

Chang S., Chen H., Tang G. P.. Augmentation quotients for complex representation rings of dihedral groups. Front. Math. China, 2012, 7: 1-18

[4]

Chang S.. Augmentation quotients for complex representation rings of point groups. J. Anhui University (Natural Science Edition), 2014, 38: 13-19

[5]

Chang, S., Augmentation quotients for real representation rings of cyclic groups, Front. Math. China, preprint.

[6]

Karpilovsky G.. Commutative Group Algebras, 1983, New York: Marcel Dekker

[7]

Chang S., Tang G. P.. A basis for augmentation quotients of finite abelian groups. J. Algebra, 2011, 327: 466-488

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/