Estimates for fourier coefficients of cusp forms in weight aspect

Hengcai Tang

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (5) : 793 -802.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (5) : 793 -802. DOI: 10.1007/s11401-016-1013-1
Article

Estimates for fourier coefficients of cusp forms in weight aspect

Author information +
History +
PDF

Abstract

Let f be a holomorphic Hecke eigenform of weight k for the modular group Γ = SL 2(Z) and let λ f (n) be the n-th normalized Fourier coefficient. In this paper, by a new estimate of the second integral moment of the symmetric square L-function related to f, the estimate $\sum\limits_{n \leqslant x} {{\lambda _f}\left( {{n^2}} \right)} \ll {x^{\frac{1}{2}}}{k^{\frac{1}{2}}}{\left( {\log \left( {x + k} \right)} \right)^6}$ is established, which improves the previous result.

Keywords

Fourier coefficients / Cusp forms / Symmetric square L-function

Cite this article

Download citation ▾
Hengcai Tang. Estimates for fourier coefficients of cusp forms in weight aspect. Chinese Annals of Mathematics, Series B, 2016, 37(5): 793-802 DOI:10.1007/s11401-016-1013-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Davenport H.. Multiplicative Number Theory, 1980, New York: Springer-Verlag

[2]

Deligne P.. La Conjecture de Weil. Inst. Hautes Sci., 1974, 43: 29-39

[3]

Feldvoss J.. Projective modules and block of supersolvable restricted Lie algebras. J. Algebra, 1999, 222: 284-300

[4]

Fomenko O. M.. Identities involving coefficients of automorphic L-functions. J. Math. Sci., 2006, 133: 1749-1755

[5]

Gelbart S., Jacquet H.. A relation between automorphic representations of GL(2) and GL(3). Ann. Sci. École Norm. Sup., 1978, 11: 471-552

[6]

Ichihara Y.. Estimates of a certain sum involving coefficients of cusp forms in weight and level aspects. Lith. Math. J., 2008, 48: 188-202

[7]

Ivic A.. On sums of Fourier coeffcients of cusp form, IV, International Conference “Modern Problems of Number Theory and Its Applications”: Current Problems, part II(Russia)(Tula,2001), 2002

[8]

Iwaniec H., Luo W., Sarnak P.. Low lying zeros of families of L-functions. Inst. Hautes Etudes Sci. Publ. Math., 2000, 91: 55-131

[9]

Li X.. Bounds for GL(3) × GL(2) L-functions and GL(3) L-functions. Ann. Math., 2011, 173: 301-336

[10]

G.. Uniform estimates for sums of Fourier coefficients of cusp forms. Acta Math. Hungar., 2009, 124: 83-97

[11]

Montgomery H. L., Vaughan R. C.. Hilbert’s inequality. J. London Math. Soc., 1974, 8: 73-82

[12]

Ramachandra K., Sankaranarayanan A.. On an asymptotic formula of Srinivasa Ramanujan. Acta Arith., 2003, 109: 349-357

[13]

Sankaranarayanan A.. On a sum involving Fourier coefficients of cusp forms. Lith. Math. J., 2006, 46: 459-474

[14]

Soundararajan K.. Weak subconvexity of central values of L-function. Ann. Math., 2010, 172: 1469-1498

[15]

Tang H.. Estimates for the Fourier coefficients of symmetric square L-functions. Archiv. der. Math., 2013, 100: 123-130

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/