Symmetric periodic orbits and uniruled real Liouville domains

Urs Frauenfelder , Otto van Koert

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (4) : 607 -624.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (4) : 607 -624. DOI: 10.1007/s11401-016-1012-2
Article

Symmetric periodic orbits and uniruled real Liouville domains

Author information +
History +
PDF

Abstract

A real Liouville domain is a Liouville domain with an exact anti-symplectic involution. The authors call a real Liouville domain uniruled if there exists an invariant finite energy plane through every real point. Asymptotically, an invariant finite energy plane converges to a symmetric periodic orbit. In this note, they work out a criterion which guarantees uniruledness for real Liouville domains.

Keywords

Symmetric periodic orbits / Real symplectic manifolds / Real uniruledness

Cite this article

Download citation ▾
Urs Frauenfelder, Otto van Koert. Symmetric periodic orbits and uniruled real Liouville domains. Chinese Annals of Mathematics, Series B, 2016, 37(4): 607-624 DOI:10.1007/s11401-016-1012-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albers P., Frauenfelder U., van Koert O., Paternain G.. The contact geometry of the restricted 3-body problem. Comm. Pure Appl. Math., 2012, 65(2): 229-263

[2]

Birkhoff G.. The restricted problem of three bodies. Rend. Circ. Matem. Palermo, 1915, 39: 265-334

[3]

Georgieva, P. and Zinger, A., Enumeration of real curves in CP2n-1 and a WDVV relation for real Gromov-Witten invariants, arXiv: 1309.4079.

[4]

Hofer H., Viterbo C.. The Weinstein conjecture in the presence of holomorphic spheres. Comm. Pure Appl. Math., 1992, 45(5): 583-622

[5]

Hofer H., Wysocki K., Zehnder E.. Properties of pseudoholomorphic curves in symplectisations I: Asymptotics. Ann. Inst. Henri Poincaré, 1996, 13: 337-379

[6]

Hofer H., Wysocki K., Zehnder E.. Thomas C. B.. Properties of pseudoholomorphic curves in symplectisations IV: Asymptotics with degeneracies. Contact and Symplectic Geometry, 1996, Cambridge: Cambridge University Press 78-117

[7]

Hofer H., Wysocki K., Zehnder E.. Correction to “Properties of pseudoholomorphic curves in symplectisations I: Asymptotics”. Ann. Inst. Henri Poincaré, 1998, 15–4: 535-538

[8]

Hu J., Li T. J., Ruan Y.. Birational cobordism invariance of uniruled symplectic manifolds. Invent. Math., 2008, 172(2): 231-275

[9]

Li T. J.. Existence of Symplectic Surfaces, Geometry and Topology of Manifolds, Fields Inst. Commun., 2005, Providence, RI: Amer. Math. Soc. 203-217

[10]

Liu G., Tian G.. Weinstein conjecture and GW-invariants. Comm. Contemp. Math., 2000, 2(4): 405-459

[11]

Lu G.. The Weinstein conjecture in the uniruled manifolds. Math. Res. Lett., 2000, 7(4): 383-387

[12]

McDuff D., Salamon D.. Introduction to Symplectic Topology, Second edition. Oxford Mathematical Monographs, 1998, New York: The Clarendon Press, Oxford University Press

[13]

McDuff D., Salamon D.. J-holomorphic Curves and Symplectic Topology, American Mathematical Society Colloquium Publications, 2004, Providence, RI: American Mathematical Society

[14]

McLean M.. Symplectic invariance of uniruled affine varieties and log Kodaira dimension. Duke Math. J., 2014, 163(10): 1929-1964

[15]

Milnor J., Stasheff J.. Characteristic classes, Annals of Mathematics Studies, 1974, Tokyo: University of Tokyo Press

[16]

Mora E.. Pseudoholomorphic cylinders in symplectisations, 2003

[17]

Okonek C., Schneider M., Spindler H.. Vector Bundles on Complex Projective Spaces, 2011, Basel: Springer Basel AG

[18]

Pandharipande R., Thomas R.. 13 2 ways of counting curves, Proceedings of “School on Moduli Spaces”, 2011, Cambridge: Isaac Newton Institute

[19]

Seifert H.. Periodische Bewegungen mechanischer Systeme. Math. Z., 1948, 51: 197-216

[20]

Welschinger J.-Y.. Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry. Invent. Math., 2005, 162(1): 195-234

[21]

Wendl C.. Contact hypersurfaces in uniruled symplectic manifolds always separate. J. Lond. Math. Soc., 2014, 89(2): 832-852

AI Summary AI Mindmap
PDF

294

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/