Gröbner-Shirshov basis for degenerate Ringel-Hall algebras of type F 4

Zhenzhen Gao , Abdukadir Obul

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 199 -210.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 199 -210. DOI: 10.1007/s11401-016-1011-3
Article

Gröbner-Shirshov basis for degenerate Ringel-Hall algebras of type F 4

Author information +
History +
PDF

Abstract

In this paper, by using the Frobenius morphism and the multiplication formulas of the generic extension monoid algebra, the authors first give a presentation of the degenerate Ringel-Hall algebra, and then construct the Gröbner-Shirshov basis for degenerate Ringel-Hall algebras of type F 4.

Keywords

Gröbner-Shirshov basis / Frobenius map / Degenerate Ringel-Hall algebras / Multiplication formulas

Cite this article

Download citation ▾
Zhenzhen Gao, Abdukadir Obul. Gröbner-Shirshov basis for degenerate Ringel-Hall algebras of type F 4. Chinese Annals of Mathematics, Series B, 2016, 37(2): 199-210 DOI:10.1007/s11401-016-1011-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Buchberger B.. An algorithm for finding a basis for the residue class ring of a zero-dimensional ideal, 1965

[2]

Bergman G. M.. The diamond lemma for ring theory. Adv. Math., 1978, 29: 178-218

[3]

Shirshov A. I.. Some algorithmic problems for Lie algebras. Siberian Math. J., 1962, 3: 292-296

[4]

Reineke M.. Generic extensions and multiplicative bases of quantum groups at q = 0. Represent. Theory, 2001, 5: 147-163

[5]

Deng B. M., Du J.. Frobenius morphisms and representations of algebras. Trans. Amer., 2006, 358(8): 3591-3622

[6]

Bokut L. A.. Imbeddings into simple associative algebras. Algebra and Logic, 1976, 15: 117-142

[7]

Deng B. M., Du J., Parshal B., Wang J. P.. Finite Dimensional Algebra and Quantum Groups, Mathematical Surveys and Monographs, 2008, Providence, RI: Amer. Math. Soc.

[8]

Deng B. M., Du J., Xiao J.. Generic extensions and canonical bases for cyclic quivers. Canad. J. Math., 2007, 59(6): 1260-1283

[9]

Dlab, V. and Ringel, C. M., On algebras of finite representation type, J. Algebra, 33, 1975, 306–394.

[10]

Dlab V., Ringel C. M.. Indecomposable Representations of Graphs and Algebras. Memoirs Amer. Math. Soc., 1976, 6(173): 1-63

[11]

Ringel C. M.. The composition algebra of a cyclic quiver. Proc. London Math. Soc., 1993, 66: 507-537

[12]

Zhao Z., Fan L.. Presenting degenerate Ringel-Hall algebras of type B. Sci. China Math., 2012, 55(5): 949-960

[13]

Bongartz K.. On degenerations and extensions of finite dimensional modules. Adv. Math., 1996, 121: 245-287

[14]

Reineke, M., The quantic monoid and degenerate quantized enveloping algebras, arXiv: math/0206095v1.

[15]

Qiang C. X., Obul A.. Skew-commutator relations and Göbner-Shirshov basis of quantum group of type F4. Front. Math. in China, 2014, 9(1): 135-150

[16]

Kang S., Lee K.. Gröbner-Shirshov bases for representation theory. J. Korean Math. Soc., 2000, 37: 55-72

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/