Rational structure of X(N) over ℚ and explicit Galois action on CM points

Tonghai Yang

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (6) : 821 -832.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (6) : 821 -832. DOI: 10.1007/s11401-016-1009-x
Article

Rational structure of X(N) over ℚ and explicit Galois action on CM points

Author information +
History +
PDF

Abstract

This paper reviews a less known rational structure on the Siegel modular variety X(N) = Γ(N)ℍ g over ℚ for integers g, N ≥ 1. The author then describes explicitly how Galois groups act on CM points on this variety. Finally, another proof of the Shimura reciprocity law by using the result and the q-expansion principle is given.

Keywords

Siegel modular variety / Galois action / Explicit reciprocity law

Cite this article

Download citation ▾
Tonghai Yang. Rational structure of X(N) over ℚ and explicit Galois action on CM points. Chinese Annals of Mathematics, Series B, 2016, 37(6): 821-832 DOI:10.1007/s11401-016-1009-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Costello C., Deines-Schartz A., Lauter K., Yang T. H.. Constructing abelian surfaces for cryptography via Rosenhain invariants. LMS J. Comput. Math. Ser. A, 2014, 17: 157-180

[2]

Genestier A., Ngo B. C.. Lectures on Shimura varieties, Asian-French Summer School on Algebraic Geometry and Number Theory, 2009, Paris: Soc. Math. France

[3]

Katz N., Mazur B.. Arithmetic moduli of elliptic curves, Ann. Math. Studies, 1985

[4]

Lang S.. Complex Multiplication, 1983, New York: Springer-Verlag

[5]

Shimura G.. On canonical models of bounded symmetric domains I. Ann. Math., 1970, 91: 144-222

[6]

Shimura G.. On certain reciprocity laws for theta functions and modular functions. Acta Math., 1978, 141: 35-71

[7]

Shimura G.. Abelian Vareities with Complex Multiplication and Modular Forms, 1998, princeton: Princeton University Press

[8]

Shimura G., Taniyama Y.. Complext Multiplication of Abelian Varieties and Its Applications to Number Theory, Publ. Math. Soc. Japan, 1961, Tokyo: The Mathematical Society of Japan

[9]

Silverman J. H.. Advanced Topics in the Arithmetic of Elliptic Curves, 1994, New York: Springer-Verlag

[10]

Streng M.. An explicit version of Shimura’s reciprocity law for the Siegel modular functions, 2012

AI Summary AI Mindmap
PDF

243

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/