On unitary invariant weakly complex Berwald metrics with vanishing holomorphic curvature and closed geodesics

Hongchuan Xia , Chunping Zhong

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 161 -174.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 161 -174. DOI: 10.1007/s11401-016-1007-z
Article

On unitary invariant weakly complex Berwald metrics with vanishing holomorphic curvature and closed geodesics

Author information +
History +
PDF

Abstract

In this paper, the authors construct a class of unitary invariant strongly pseudoconvex complex Finsler metrics which are of the form $F = \sqrt {rf\left( {s - t} \right)} $, where $r = {\left\| v \right\|^2}$, $s = \frac{{{{\left| {\left\langle {z,v} \right\rangle } \right|}^2}}}{r}$, $t = {\left\| z \right\|^2}$, f(w) is a real-valued smooth positive function of w ∈ R, and z is in a unitary invariant domain M ⊂ C n. Complex Finsler metrics of this form are unitary invariant. We prove that F is a class of weakly complex Berwald metrics whose holomorphic curvature and Ricci scalar curvature vanish identically and are independent of the choice of the function f. Under initial value conditions on f and its derivative f′, we prove that all the real geodesics of $F = \sqrt {rf\left( {s - t} \right)} $ on every Euclidean sphere S2n−1M are great circles.

Keywords

Complex Finsler metrics / Weakly complex Berwald metrics / Closed geodesics

Cite this article

Download citation ▾
Hongchuan Xia, Chunping Zhong. On unitary invariant weakly complex Berwald metrics with vanishing holomorphic curvature and closed geodesics. Chinese Annals of Mathematics, Series B, 2016, 37(2): 161-174 DOI:10.1007/s11401-016-1007-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abate M., Aikou T., Patrizio G.. Preface for Complex Finsler Geometry. Finsler Geometry: Joint Summer Research Conference on Finsler Geometry July 16–20, 1995 Seattle, Washington, 1996, 196: 97-100

[2]

Abate M., Patrizio G.. Finsler metrics — A global approach with applications to geometric function theory, 1994, Berlin, Aeidelberg: Springer-verlag

[3]

Aikou T.. On complex Finsler manifolds. Rep. Fac. Sci. Kagoshima Univ., 1991, 24: 9-25

[4]

Aikou T.. Some remarks on locally conformal complex Berwald spaces. Contemp. Math., 1996, 196: 109-120

[5]

Chen B., Shen Y.. Kähler Finsler metrics are actually strongly Kähler. Chin. Ann. Math., Ser. B, 2009, 30(2): 173-178

[6]

Dragomir S., Grimaldi R.. On Runds connection. Note di Matematica, 1995, 15(1): 85-98

[7]

Horn R. A., Johnson C. R.. Matrix Analysis, 1985, Cambridge, New York: Cambridge University Press

[8]

Lempert L.. La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. France, 1981, 109: 427-474

[9]

Matsumoto M.. Foundations of Finsler geometry and special Finsler spaces, 1986

[10]

Munteanu G.. Complex spaces in Finsler, Lagrange and Hamilton geometries, 2004, Dordrecht, Boston, London: Kluwer Academic Publishers

[11]

Pang M. Y.. Finsler metrics with the properties of the Kobayashi metric on convex domains. Publications Mathématiques, 1992, 36: 131-155

[12]

Rund H.. The curvature theory of direction-dependent connections on complex manifolds. Tensor, 1972, 24: 189-205

[13]

Sun L., Zhong C.. Characterization of complex Finsler connections and weakly complex Berwald metrics. Differ. Geom. Appl., 2013, 31: 648-671

[14]

Zhong C.. On real and complex Berwald connections associated to strongly convex weakly Kähler-Finsler metric. Differ. Geom. Appl., 2011, 29: 388-408

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/