New subclasses of biholomorphic mappings and the modified Roper-Suffridge operator

Chaojun Wang , Yanyan Cui , Hao Liu

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (5) : 691 -704.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (5) : 691 -704. DOI: 10.1007/s11401-016-1005-1
Article

New subclasses of biholomorphic mappings and the modified Roper-Suffridge operator

Author information +
History +
PDF

Abstract

The authors propose a new approach to construct subclasses of biholomorphic mappings with special geometric properties in several complex variables. The Roper-Suffridge operator on the unit ball B n in C n is modified. By the analytical characteristics and the growth theorems of subclasses of spirallike mappings, it is proved that the modified Roper-Suffridge operator [Φ G,γ (f)](z) preserves the properties of SΩ *(A,B), as well as strong and almost spirallikeness of type β and order α on B n. Thus, the mappings in SΩ *(A,B), as well as strong and almost spirallike mappings, can be constructed through the corresponding functions in one complex variable. The conclusions follow some special cases and contain the elementary results.

Keywords

Biholomorphic mappings / Spirallike mappings / Starlike mappings / Roper-Suffridge operator

Cite this article

Download citation ▾
Chaojun Wang, Yanyan Cui, Hao Liu. New subclasses of biholomorphic mappings and the modified Roper-Suffridge operator. Chinese Annals of Mathematics, Series B, 2016, 37(5): 691-704 DOI:10.1007/s11401-016-1005-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cai R. H., Liu X. S.. The third and fourth coefficient estimations for the subclasses of strongly spirallike functions. Journal of Zhanjiang Normal College, 2010, 31: 38-43

[2]

Feng S. X., Liu T. S.. The generalized Roper-Suffridge extension operator. Acta. Math. Sci. Ser. B, 2008, 28: 63-80

[3]

Feng S. X., Yu L.. Modified Roper-Suffridge operator for some holomorphic mappings. Frontiers of Mathematics in China, 2011, 6(3): 411-426

[4]

Gong S., Liu T. S.. The generalized Roper-Suffridge extension operator. J. Math. Anal. Appl., 2003, 284: 425-434

[5]

Graham I., Hamada H., Kohr G., Suffridge T. J.. Extension operators for locally univalent mappings. Michigan Math. J., 2002, 50: 37-55

[6]

Graham I., Kohr G.. Geometric Function Theory in One and Higher Dimensions, 2003, New York: Marcel Dekker

[7]

Graham I., Kohr G.. Univalent mappings associated with the Roper-Suffridge extension operator. J. Analyse Math., 2000, 81: 331-342

[8]

Graham I., Kohr G., Kohr M.. Loewner chains and Roper-Suffridge extension operator. J. Math. Anal. Appl., 2000, 247: 448-465

[9]

Graham I., Varolin D.. Bloch constants in one and several variables. Pacif. J. Math., 1996, 174: 347-357

[10]

Liu M. S., Zhu Y. C.. The generalized Roper-Suffridge extension operator on Banach spaces (III). Sci. China Math. Ser. A, 2010, 40(3): 265-278

[11]

Liu X. S., Feng S. X.. A remark on the generalized Roper-Suffridge extension operator for spirallike mappings of type ß and order a. Chin. Quart. J. Math., 2009, 24(2): 310-316

[12]

Liu X. S., Liu T. S.. The generalized Roper-Suffridge extension operator on a Reinhardt domain and the unit ball in a complex Hilbert space. Chin. Ann. Math. Ser. A, 2005, 26(5): 721-730

[13]

Muir, J. R., A class of Loewner chain preserving extension operators, J. Math. Anal. Appl., 337(2), 2008, 862–879.

[14]

Muir, J. R., A modification of the Roper-Suffridge extension operator, Comput. Methods Funct. Theory, 5(1), 2005, 237–251.

[15]

Muir J. R., Suffridge T. J.. Extreme points for convex mappings of Bn. J. Anal. Math., 2006, 98: 169-182

[16]

Muir J. R., Suffridge T. J.. Unbounded convex mappings of the ball in Cn. Trans. Amer. Math. Soc., 2001, 129(11): 3389-3393

[17]

Roper K. A., Suffridge T. J.. Convex mappings on the unit ball of Cn. J. Anal. Math., 1995, 65: 333-347

[18]

Wang J. F.. Modified Roper-Suffridge operator for some subclasses of starlike mappings on Reinhardt domains. Acta. Math. Sci., 2013, 33B(6): 1627-1638

[19]

Wang J. F.. On the growth theorem and the Roper-Suffridge extension operator for a class of starlike mappings in Cn. Chin. Ann. Math. Ser. A, 2013, 34(2): 223-234

[20]

Wang, J. F. and Liu, T. S., A modification of the Roper-Suffridge extension operator for some holomorphic mappings, Chin. Ann. Math. Ser. A, 31(4), 2010, 487–496 (in Chinese).

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/