Double biproduct Hom-bialgebra and related quasitriangular structures
Tianshui Ma , Haiying Li , Linlin Liu
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (6) : 929 -950.
Double biproduct Hom-bialgebra and related quasitriangular structures
Let (H, β) be a Hom-bialgebra such that β 2 = id H. (A, α A) is a Hom-bialgebra in the left-left Hom-Yetter-Drinfeld category H HYD and (B, α B) is a Hom-bialgebra in the right-right Hom-Yetter-Drinfeld category YDH H. The authors define the two-sided smash product Hom-algebra $\left( {A\natural H\natural B,{\alpha _A} \otimes \beta \otimes {\alpha _B}} \right)$ and the two-sided smash coproduct Homcoalgebra $\left( {A\diamondsuit H\diamondsuit B,{\alpha _A} \otimes \beta \otimes {\alpha _B}} \right)$. Then the necessary and sufficient conditions for $\left( {A\natural H\natural B,{\alpha _A} \otimes \beta \otimes {\alpha _B}} \right)$ and $\left( {A\diamondsuit H\diamondsuit B,{\alpha _A} \otimes \beta \otimes {\alpha _B}} \right)$ to be a Hom-bialgebra (called the double biproduct Hom-bialgebra and denoted by $\left( {A_\diamondsuit ^\natural H_\diamondsuit ^\natural B,{\alpha _A} \otimes \beta \otimes {\alpha _B})} \right)$ are derived. On the other hand, the necessary and sufficient conditions for the smash coproduct Hom-Hopf algebra $\left( {A\diamondsuit H,{\alpha _A} \otimes \beta } \right)$ to be quasitriangular are given.
Double biproduct / Hom-Yetter-Drinfeld category / Radford’s biproduct / Hom-Yang-Baxter equation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
Yau, D., Module Hom-algebras. arXiv:0812.4695v1 |
| [22] |
|
| [23] |
|
| [24] |
Yau, D., Hom-quantum groups II,cobraided Hom-bialgebras and Hom-quantum geometry. arXiv:0907.1880 |
| [25] |
Yau, D., Hom-quantum groups III, representations and module Hom-algebras. arXiv:0911.5402 |
| [26] |
|
| [27] |
|
/
| 〈 |
|
〉 |