Orientable small covers over a product space

Danting Wang , Yanying Wang , Yanhong Ding

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (3) : 331 -356.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (3) : 331 -356. DOI: 10.1007/s11401-016-0979-z
Article

Orientable small covers over a product space

Author information +
History +
PDF

Abstract

A small cover is a closed manifold M n with a locally standard (ℤ2) n-action such that its orbit space is a simple convex polytope P n. Let Δ n denote an n-simplex and P(m) an m-gon. This paper gives formulas for calculating the number of D-J equivalent classes and equivariant homeomorphism classes of orientable small covers over the product space $\Delta ^{n_1 } \times \Delta ^{n_2 } \times P(m)$, where n 1 is odd.

Keywords

(ℤ2) n-Action / Small cover / Equivariant homeomorphism / Polytope

Cite this article

Download citation ▾
Danting Wang, Yanying Wang, Yanhong Ding. Orientable small covers over a product space. Chinese Annals of Mathematics, Series B, 2016, 37(3): 331-356 DOI:10.1007/s11401-016-0979-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alperin J. L., Bell R. B.. Groups and Representations, 1995, Berlin: Springer-Verlag

[2]

Cai M., Chen X., Z.. Small covers over prisms. Topology Appl., 2007, 154: 2228-2234

[3]

Chen Y., Wang Y.. Small covers over a product of simplices. Filomat, 2013, 27: 777-787

[4]

Choi S.. The number of orientable small covers over cubes. Proc. Japan Acad., Ser. A, 2010, 86: 97-100

[5]

Davis M., Januszkiewicz T.. Convex polytopes. Coxeter orbifolds and torus actions, Duke Math. J., 1991, 62: 417-451

[6]

Garrison A., Scott R.. Small covers of the dodecahedron and the 120-cell. Proc. Amer. Math. Soc., 2003, 131: 963-971

[7]

Z., Masuda M.. Equivariant classification of 2-torus manifolds. Colloq. Math., 2009, 115: 171-188

[8]

Meng Y.. On closed manifolds and moment-angle complex in toric topology, Dissertation, 2012

[9]

Nakayama H., Nishimura Y.. The orientability of small covers and coloring simple polytopes. Osaka J. Math., 2005, 42: 243-256

[10]

Ziegler G. M.. Lectures on Polytopes, 1994, Berlin: Springer-Verlag

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/