Some properties of meromorphic solutions to systems of complex differential-difference equations

Haichou Li

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (5) : 719 -728.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (5) : 719 -728. DOI: 10.1007/s11401-016-0978-0
Article

Some properties of meromorphic solutions to systems of complex differential-difference equations

Author information +
History +
PDF

Abstract

Applying Nevanlinna theory of the value distribution of meromorphic functions, the author studies some properties of Nevanlinna counting function and proximity function of meromorphic solutions to a type of systems of complex differential-difference equations. Specifically speaking, the estimates about counting function and proximity function of meromorphic solutions to systems of complex differential-difference equations can be given.

Keywords

Differential-difference equation / Systems of equation / Meromorphic solutions / Proximity function / Counting function

Cite this article

Download citation ▾
Haichou Li. Some properties of meromorphic solutions to systems of complex differential-difference equations. Chinese Annals of Mathematics, Series B, 2016, 37(5): 719-728 DOI:10.1007/s11401-016-0978-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hayman W. K.. Meromorphic Functions, Oxford Mathematical Monongraphs, 1964, Oxford: Clarendon Press

[2]

Cherry, W. and Ye, Z., Nenvanlinna’s Theory of Value Distribution, Springer Monographs in Mathematics, Springer-Verlag, Berlin, Germany, 2001.

[3]

Laine I.. Nevanlinna Theory and Complex Differential Equations, 1993, Berlin: Walter de Gruyter

[4]

Yi H. X., Yang C. C.. Theory of the Uniqueness of Meromorphic Functions, 1995, Beijing: Science Press

[5]

Gao L. Y.. The growth of systems of complex nonlinear algebraic differential equations. Acta Mathematica Scientia Series B, 2010, 30(5): 1507-1513

[6]

Gao L. Y.. The growth of solutions of systems of complex nonlinear algebraic differential equations. Acta Mathematica Scientia Series B, 2010, 30(3): 932-938

[7]

Tu Z. H., Xiao X. Z.. On the meromorphic solutionas of systems of higher-order algebraic differential equations. Complex Variables, 1990, 15: 197-209

[8]

Song S. G.. Meromorphic solutions of differential equations in the complex domain. Acta Math. Sinica, 1991, 34: 779-784

[9]

Li K. S., Chan W. L.. Meromorphic solutions of higher order system of algebraic differential equations. Math. Scand., 1992, 71: 105-121

[10]

Ablowitz M. J., Halburd R., Herbst B.. On the extension of the PainlevLe property to difference equations. Nonlinearity, 2000, 13(3): 889-905

[11]

Heittokangas J., Korhonen R., Laine I. Complex difference equations of Malmquist type. Computational Methods and Function Theory, 2001, 1(1): 27-39

[12]

Laine I., Rieppo J., Silvennoinen H.. Remarks on complex difference equations. Computational Methods and Function Theory, 2005, 5(1): 77-88

[13]

Chiang Y. M., Feng S. J.. On the Nevanlinna characteristic of f(z + ?) and difference equations in the complex plane. Ramanujan Journal, 2008, 16(1): 105-129

[14]

Li H. C., Gao L. Y.. Meromorphic solutions of a type of system of complex differential-difference equations. Acta Mathematica Scientia Series B, 2015, 35(1): 195-206

[15]

Gao L. Y.. Systems of complex difference equations of Malmquist type. Acta Mathematica Scientia Series B, 2012, 55(2): 293-300

[16]

Chen Z. X.. Fixed points of meromorphic functions and of their differences and shifts. Ann. Polon. Math., 2013, 109(2): 153-163

[17]

Gao L. Y.. Estimates of N-function and m-function of meromorphic solutions of systems of complex difference equations. Acta Mathematica Scientia Series B, 2012, 32(4): 1495-1502

[18]

Li H. C., Gao L. Y.. Meromorphic solutions of system of functional equations. J. Math., 2012, 32(4): 593-597

[19]

Wissenborn G.. On the theorem of Tumura an Clunie. London Math. Soc., 1986, 18: 371-373

[20]

Goldstein R.. Some results on factorisation of meromorphic functions. Journal of the London Mathematical Society, 1971, 4(2): 357-364

[21]

Korhonen, R., A new clunie type theorem for difference polynomials, J. Differ. Equ. Appl., 17(3), 2011, 387–400.

[22]

Yanagihara N.. Meromorphic solutionas of some difference equations. Funkcialaj Ekvacioj, 1980, 23: 309-326

[23]

Yanagihara N.. Meromorphic solutionas of some difference equations of the nth order. Arch Ration. Mech. Anal., 1983, 91: 19-192

[24]

Shimomura S.. Entire solutins of a polynomial difference equation. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 1981, 28: 253-266

[25]

Gao L. Y., Zhang Y., Li H. C.. Growth of solutions of complex non-linear algebraic differential equations. J. Math., 2011, 31(5): 785-790

[26]

Li H. C., Gao L. Y.. Transcendental meromorphic solutions of second-order algebraic differential equations. J. Math. Res. Exposition, 2011, 31(3): 497-502

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/