PDF
Abstract
In this paper, the author considers a class of bounded pseudoconvex domains, i.e., the generalized Cartan-Hartogs domains Ω(μ, m). The first result is that the natural Kähler metric g Ω(μ, m) of Ω(μ, m) is extremal if and only if its scalar curvature is a constant. The second result is that the Bergman metric, the Kähler-Einstein metric, the Carathéodary metric, and the Koboyashi metric are equivalent for Ω(μ, m).
Keywords
Canonical metric
/
Extremal metric
/
Comparison theorem
/
Generalized Cartan-Hartogs domains
Cite this article
Download citation ▾
Yihong Hao.
Canonical metrics on generalized Cartan-Hartogs domains.
Chinese Annals of Mathematics, Series B, 2016, 37(3): 357-366 DOI:10.1007/s11401-016-0976-2
| [1] |
Arazy J.. A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains. Contemp. Math., 1995, 185: 7-65
|
| [2] |
Berman R. J.. K-polystability of Q-Fano varieties admitting Kähler–Einstein metrics, 2012
|
| [3] |
Calabi E.. Extremal Kähler metrics, Seminar on Differential Geometry. Ann. of Math. Stud., 1982, 102: 259-290
|
| [4] |
Calabi E.. Extremal Kähler Metrics II, Differential Geometry and Complex Analysis, 1985, Berlin Heidelberg: Springer-Verlag 95-114
|
| [5] |
Cartan E.. Sur les domaines born`es homogenes de l’espace de n variables complexes. Abh. Math. Sem. Univ. Hamburg, 1935, 11(1): 116-162
|
| [6] |
Chang S. C.. On the existence of nontrivial extremal metrics on complete noncompact surfaces. Math. Ann., 2002, 324(3): 465-490
|
| [7] |
Chen X., Tian G.. Uniqueness of extremal Kähler metrics. C. R. Math. Acad. Sci. Paris, Ser., 2005, 340(4): 287-290
|
| [8] |
Cheng S. Y., Yau S. T.. On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman’s equation. Comm. Pure Appl. Math., 1980, 33(4): 507-544
|
| [9] |
Deng F., Guan Q., Zhang L.. Some properties of squeezing functions on bounded domains. Pacific J. Math., 2012, 257(2): 319-341
|
| [10] |
Deng F., Guan Q., Zhang L.. Properties of squeezing functions and global transformations of bounded domains, 2013
|
| [11] |
Donaldson S. K.. Scalar curvature and projective embeddings. I, J. Differential Geom., 2001, 59(3): 479-522
|
| [12] |
Donaldson S. K.. Lower bounds on the Calabi functional. J. Differential Geom., 2005, 70(3): 453-472
|
| [13] |
Guan D.. Existence of extremal metrics on compact almost homogeneous Kähler manifolds with two ends. Trans. Amer. Math. Soc., 1995, 347(6): 2255-2262
|
| [14] |
Kim K. T., Zhang L.. On the uniform squeezing property and the squeezing function, 2013
|
| [15] |
Liu K., Sun X., Yau S. T.. Canonical metrics on the moduli space of Riemann surfaces I. J. Differential Geom., 2004, 68(3): 571-637
|
| [16] |
Loi A., Zuddas F.. Canonical metrics on Hartogs domains. Osaka J. Math., 2010, 47(2): 507-521
|
| [17] |
Loos O.. Bounded symmetric domains and Jordan pairs, 1977
|
| [18] |
Mabuchi T.. Uniqueness of extremal Kähler metrics for an integral Kähler class. Intern. J. Math., 2004, 15(6): 531-546
|
| [19] |
Mabuchi T.. K-stability of constant scalar curvature polarization, 2008
|
| [20] |
Paul S. T.. Hyperdiscriminant polytopes. Chow polytopes, and Mabuchi energy asymptotics, Ann. of Math., 2012, 175(1): 255-296
|
| [21] |
Stoppa J.. K-stability of constant scalar curvature Kähler manifolds. Adv. Math., 2009, 221(4): 1397-1408
|
| [22] |
Stoppa J., Székelyhidi G.. Relative K-stability of extremal metrics. J. Eur. Math. Soc., 2011, 13(4): 899-909
|
| [23] |
Székelyhidi G.. Extremal metrics and K-stability. E Bull. Lond. Math. Soc., 2007, 39: 76-8
|
| [24] |
Tian G.. Kähler-Einstein metrics with positive scalar curvature. Invent. Math., 1997, 130(1): 1-37
|
| [25] |
Wang A., Hao Y.. The explicit solutions for a class of complex Monge-Ampere equations. Nonlinear Anal. Theor., 2014, 95: 639-649
|
| [26] |
Wang A., Yin W., Zhang L., Roos G.. The Kähler-Einstein metric for some Hartogs domains over symmetric domains. Sci. Chin. Ser. A: Math., 2006, 49(9): 1175-1210
|
| [27] |
Xu X. W.. On the existence of extremal metrics. Pacific J. Math., 1996, 174: 555-568
|
| [28] |
Yeung S. K.. Geometry of domains with the uniform squeezing property. Adv. Math., 2009, 221(2): 547-569
|
| [29] |
Zedda M.. Canonical metrics on Cartan-Hartogs domains. Int. J. Geom. Methods M., 2012, 9(1): 1250011
|