On a dual risk model perturbed by diffusion with dividend threshold

Hui Zhi , Jiangyan Pu

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (5) : 777 -792.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (5) : 777 -792. DOI: 10.1007/s11401-016-0975-3
Article

On a dual risk model perturbed by diffusion with dividend threshold

Author information +
History +
PDF

Abstract

In the dual risk model, the surplus process of a company is a Lévy process with sample paths that are skip-free downwards. In this paper, the authors assume that the surplus process is the sum of a compound Poisson process and an independent Wiener process. The dual of the jump-diffusion risk model under a threshold dividend strategy is discussed. The authors derive a set of two integro-differential equations satisfied by the expected total discounted dividend until ruin. The cases where profits follow an exponential or mixtures of exponential distributions are solved. Applying the key method of the Laplace transform, the authors show how the integro-differential equations are solved. The authors also discuss the conditions for optimality and show how an optimal dividend threshold can be calculated as well.

Keywords

Dual risk model / Threshold strategy / Stochastic optimal control / Smooth pasting condition

Cite this article

Download citation ▾
Hui Zhi, Jiangyan Pu. On a dual risk model perturbed by diffusion with dividend threshold. Chinese Annals of Mathematics, Series B, 2016, 37(5): 777-792 DOI:10.1007/s11401-016-0975-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alvarez L. H. R.. Singular stochastic control in the presence of a state-dependent yiels structure. Stoch. Proc. Appl., 2000, 86: 323-343

[2]

Asmussen S., Taksar M.. Controlled diffusion models for optimal dividend pay-out. Insur. Math. Econ., 1997, 20: 1-15

[3]

Asmussen S., Højgaard B., Taksar M.. Optimal risk control and dividend distribution policies, example of excess-of loss reinsurance for an insurance corporation. Financ. Stoch., 1999, 4(3): 299-324

[4]

Avanzi B., Gerber H. U., Shiu E. S. W.. Optimal dividends in the dual model. Insur. Math. Econ., 2007, 41: 111-123

[5]

Avanzi B., Gerber H. U.. Optimal dividends in the dual model with diffusion. ASTIN Bulletin, 2008, 38(2): 653-667

[6]

Belhaj M.. Optimal dividend payments with cash reserves follow a jump-diffusion process. Math. Financ., 2010, 20(2): 313-325

[7]

Benes V. E., Shepp L. A., Witsenhausen H. S.. Some solvable stochastic control problems. Stochastics, 1980, 4(1): 39-83

[8]

Bühlmann H.. Mathematical Methods in Risk Theory, 1970, New York: Springer-Verlag

[9]

Chi Y. C., Lin X. S.. On the threshold dividend strategy for a generalized jump-diffusion risk model. Insur. Math. Econ., 2011, 48: 326-337

[10]

De Finetti B.. Sur un’impostazione alternativa della teoria collettiva del rischio. Transction of the XVth International Congress of Actuaries, 1957, 2: 433-443

[11]

Gerber H. U.. Gamnes of economic survival with discrete-and continuous-income processes. Oper. Res., 1972, 20: 37-45

[12]

Gerber, H. and Shiu, E. S. W., On the time value of ruin, N. Amer. Actuar. J., 2, 1998, 48–78.

[13]

Gerber H., Shiu E. S. W.. Optimal dividends: Analysis with Brownian motion. N. Amer. Actuar. J., 2004, 8: 1-20

[14]

Gerber H., Shiu E. S. W.. On optimal dividends: From reflection to refraction. J. Comput. Appl. Math., 2006, 186: 4-22

[15]

Gerber H., Shiu E. S. W.. On optimal dividend strategies in the compound Poisson model. N. Amer. Actuar. J., 2006, 10: 76-93

[16]

Jeanblanc-PicquÉ M., Shiryaev A. N.. Optimization of the flow of dividends. Russ. Math. Surv., 1995, 50(2): 257-277

[17]

Li S.. The distribution of the dividend payments in the compound Poisson risk model perturbed by diffusion. Scand. Actuar. J., 2006, 2: 73-85

[18]

Miyasawa K.. An economic survival game. J. Oper. Res. Soc. JPN, 1962, 4(3): 95-113

[19]

Ng A. C. Y.. On a dual model with a dividend threshold. Insur. Math. Econ., 2009, 44: 315-324

[20]

Øksendal B.. Stochastic Differential Equations, 2006, New York: Springer-Verlag

[21]

Taksar M.. Optimal risk and dividend distribution control models for an insurance company. Math. Meth. Oper. Res., 2001, 51: 1-42

[22]

Wan N.. Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diffusion. Insur. Math. Econ., 2007, 40: 509-523

[23]

Wen Y. Z.. On a class of dual model with divided threshold. Adv. Pure Math., 2011, 1: 54-58

[24]

Wen Y. Z.. On a class of dual model with diffusion. Int. J. Contemp. Math. Sci., 2011, 6: 793-799

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/