Exact controllability with internal controls for first-order quasilinear hyperbolic systems with zero eigenvalues

Kaili Zhuang

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (4) : 503 -514.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (4) : 503 -514. DOI: 10.1007/s11401-016-0974-4
Article

Exact controllability with internal controls for first-order quasilinear hyperbolic systems with zero eigenvalues

Author information +
History +
PDF

Abstract

For first-order quasilinear hyperbolic systems with zero eigenvalues, the author establishes the local exact controllability in a shorter time-period by means of internal controls acting on suitable domains. In particular, under certain special but reasonable hypotheses, the local exact controllability can be realized only by internal controls, and the control time can be arbitrarily small.

Keywords

First-order quasilinear hyperbolic system / Zero eigenvalue / Exact controllability / Internal control

Cite this article

Download citation ▾
Kaili Zhuang. Exact controllability with internal controls for first-order quasilinear hyperbolic systems with zero eigenvalues. Chinese Annals of Mathematics, Series B, 2016, 37(4): 503-514 DOI:10.1007/s11401-016-0974-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li T. T.. Controllability and Observabilty for Quasilinear Hyperbolic Systems, AIMS Series on Applied Mathematics, 2010, Beijing: American Institute of Mathematical Sciences & Higher Education Press, Springfield

[2]

Li T. T., Rao B. P.. Local exact boundary controllability for a class of quasilinear hyperbolic systems. Chin. Ann. Math., 2002, 23B(2): 209-218

[3]

Li T. T., Rao B. P.. Exact boundary controllability for quasilinear hyperbolic systems. SIAM J. Control Optim., 2003, 41: 1748-1755

[4]

Li T. T., Rao B. P.. Strong (Weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems. Chin. Ann. Math., 2010, 31B(5): 723-742

[5]

Li T. T., Yu L. X.. Exact controllability for first order quasilinear hyperbolic systems with zero eigenvalues. Chin. Ann. Math., 2003, 24B(4): 415-422

[6]

Zhang Q.. Exact boundary controllability with less controls acting on two ends for quasilinear hyperbolic systems. Appl. Math. J. Chinese Univ. Ser. A, 2009, 24(1): 65-74

[7]

Zhuang K. L., Li T. T., Rao B. P.. Exact controllability for first order quasilinear hyperbolic systems with internal controls. Discrete Contin. Dyn. Syst., 2016, 36(2): 1105-1124

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/