An initial-boundary value problem for parabolic Monge-Ampère equation in mathematical finance

Ming Li , Changyu Ren

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (5) : 705 -712.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (5) : 705 -712. DOI: 10.1007/s11401-016-0973-5
Article

An initial-boundary value problem for parabolic Monge-Ampère equation in mathematical finance

Author information +
History +
PDF

Abstract

This paper deals with some parabolic Monge-Ampère equation raised from mathematical finance: V s V yy+ry V y V yyθV y 2= 0 (V yy < 0). The existence and uniqueness of smooth solution to its initial-boundary value problem with some requirement is obtained.

Keywords

Initial-boundary value problem / Parabolic Monge-Amp`ere equation / Strong convex monotonic function

Cite this article

Download citation ▾
Ming Li, Changyu Ren. An initial-boundary value problem for parabolic Monge-Ampère equation in mathematical finance. Chinese Annals of Mathematics, Series B, 2016, 37(5): 705-712 DOI:10.1007/s11401-016-0973-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yong J. M.. Introduction to mathematical finance. Mathematical Finance —Theory and Applications, 2000 19-137

[2]

Wang G. L., Lian S. Z.. An initial value problem for parabolic Monge-Ampère equation from investment theory. J. Partial Differential Equations, 2003, 16(4): 381-383

[3]

Lian S. Z.. Existence of solutions to initial value problem for a parabolic Monge-Ampère equation and application. Nonlinear Anal., 2006, 65(1): 59-78

[4]

Caffarelli L., Nirenberg L., Spruck J.. The Dirichlet problem for nonlinear second-order elliptic equations I. Monge-Ampère equation. Communications on Pure and Applied Mathematics, 1984, 37: 369-402

[5]

Krylov, N. V., Boundedly inhomogenuous elliptic and parabolic equations, Izv. Akad. Nauk SSSR Ser. Mat., 46, 1982, 485–523; English transl. in Math. USSR Izv., 20, 1983.

[6]

Wang G. L.. The first boundary value problem for parabolic Monge-Ampère equation. Northeast. Math. J., 1987, 3: 463-478

[7]

Wang G. L., Wang W.. The first boundary value problem for general parabolic Monge-Ampère equation. J. Partial Differential Equations, 1990, 3(2): 1-15

[8]

Ladyzhenskaja O. A., Solonnikov V. A., Ural’ceva N. N.. Linear and quasilinear equations of parabolic type, 1968, Providence, Ruode Island: American Mathematical Society

[9]

Murray H. P., Hans F. W.. Maximum Principles in Differential Equations, 1984, New York, Berlin, Heidelberg: Springer-Verlag

[10]

Lieberman G. M.. Second Order Parabolic Differential Equations, 1996, Singapore: World Scientific Publishing

[11]

Gilbarg D., Trudinger N. S.. Elliptic Partial Differential Equations of Second Order, 1983

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/