Homology groups of simplicial complements

Jun Ma , Feifei Fan , Xiangjun Wang

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (5) : 683 -690.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (5) : 683 -690. DOI: 10.1007/s11401-016-0971-7
Article

Homology groups of simplicial complements

Author information +
History +
PDF

Abstract

This paper deals with homology groups induced by the exterior algebra generated by the simplicial compliment of a simplicial complex K. By using Čech homology and Alexander duality, the authors prove that there is a duality between these homology groups and the simplicial homology groups of K.

Keywords

Stanley-Reisner ring / Simplicial complement / Barycentric subdivision / Inflation complex

Cite this article

Download citation ▾
Jun Ma, Feifei Fan, Xiangjun Wang. Homology groups of simplicial complements. Chinese Annals of Mathematics, Series B, 2016, 37(5): 683-690 DOI:10.1007/s11401-016-0971-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baskakov I. V., Buchstaber V. M., Panov T. E.. Cellular cochain algebras and torus actions. Russian Math. Surveys, 2004, 59(3): 562-563

[2]

Bredon G. E.. Sheaf Theory, Graduate Texts in Mathematics, 1997, New York: Springer-Verlag 170

[3]

Buchstaber V., Panov T.. Torus actions, combinatorial topology and homological algebra. Russian Mathematical Surveys, 2000, 55(5): 825-921

[4]

Buchstaber V., Panov T.. Toric Topology, Mathematical Surveys and Monographs, 2015

[5]

Davis M. W., Januszkiewicz T.. Convex polytopes, coxeter orbifolds and torus actions. Duke Math. J., 1991, 62(2): 417-451

[6]

Hochster M.. Cohen-macaulay ring, combinatorics and simplecial complexes, ring theory, 1977 171-223

[7]

Panov T.. Cohomology of face rings, and torus actions. London Math. Soc. Lecture Note Series, 2008, 347: 165-201

[8]

Wang X., Zheng Q.. The homology of simplicial complement and the cohomology of the moment-angle complexes. Forum Math., 2013, 27(4): 2267-2299

[9]

Yuzvinsky S.. Taylor and minimal resolutions of homogeneous polynomial ideals. Math. Res. Lett., 1999, 6(5–6): 779-793

AI Summary AI Mindmap
PDF

232

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/